Skip to main navigation menu Skip to main content Skip to site footer

Angström-Prescott empirical model to estimate solar radiation in Norte de Santander, Colombia

Abstract

The document shows the application of the empirical Angström-Prescott model in different places in Norte de Santander, Colombia. The model estimates solar radiation from hours of sunlight, at a site where brightness and solar radiation are measured. The data were obtained from the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM; algorithms were developed in RStudio to process and analyze the information. The model establishes a linear relationship between solar radiation and the hours of sunlight, in a specific geographic location. Therefore, regression analyzes were performed for three different sites, using historical records of brightness and solar radiation, obtaining the R-squared coefficients of: 0.73, 0.78, and 0.42. The models were then extrapolated to nearby regions with solar brightness records, but without solar radiation data, to obtain an estimate of radiation at these locations. Finally, a database was created with monthly average information on solar radiation for various subregions of Norte de Santander, which can be used for the design and implementation of photovoltaic systems.

Keywords

solar radiation;, Angström-Prescott equation;, empirical model;, solar brightness

PDF XML (Español)

Author Biography

Wilmer Contreras-Sepúlveda

Ingeniero Electrónico

Migan Giuseppe Galban-Pineda

Ingeniero Electrónico

Luis Fernando Bustos-Márquez

Ingeniero Electrónico, Especialista en Práctica Pedagógica Universitaria

Sergio Basilio Sepúlveda-Mora

Ingeniero Electrónico, Master of Science in Electrical and Computer Engineering

Jhon Jairo Ramírez-Mateus

Ingeniero Electrónico


References

Akinoǧlu, B. G., & Ecevit, A. (1990). A further comparison and discussion of sunshine-based models to estimate global solar radiation. Energy, 15 (10), 865–872. https://doi.org/10.1016/0360-5442(90)90068-D

Almorox, J., Benito, M., & Hontoria, C. (2005). Estimation of monthly Angström-Prescott equation coefficients from measured daily data in Toledo, Spain. Renewable Energy, 30 (6), 931–936. https://doi.org/10.1016/j.renene.2004.08.002

Asilevi, P. J., Quansah, E., Amekudzi, L. K., Annor, T., & Klutse, N. A. B. (2019). Modeling the spatial distribution of Global Solar Radiation (GSR) over Ghana using the Ångström-Prescott sunshine duration model. Scientific African, 4, e00094. https://doi.org/10.1016/j.sciaf.2019.e00094

Basaran, K., Özçift, A., & Kılınç, D. (2019). A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm. Arabian Journal for Science and Engineering, 44 (8), 7159–7171. https://doi.org/10.1007/s13369-019-03841-7

Chelbi, M., Gagnon, Y., & Waewsak, J. (2015). Solar radiation mapping using sunshine duration-based models and interpolation techniques: Application to Tunisia. Energy Conversion and Management, 101, 203–215. https://doi.org/10.1016/j.enconman.2015.04.052

Dumas, A., Andrisani, A., Bonnici, M., Graditi, G., Leanza, G., Madonia, M., & Trancossi, M. (2015). A new correlation between global solar energy radiation and daily temperature variations. Solar Energy, 116, 117–124. https://doi.org/10.1016/j.solener.2015.04.002

Hough, T. P. (Ed.). (2007). Recent developments in solar energy. Nova Science Publishers, Inc.

Hulstrom, R. L. (Ed.). (1989). Solar Resources. The MIT press.

Jamil, B., & Bellos, E. (2019). Development of empirical models for estimation of global solar radiation exergy in India. Journal of Cleaner Production, 207, 1–16. https://doi.org/10.1016/j.jclepro.2018.09.246

Luna-Carlosama, C., Jiménez-García, F., Moreno-Chuquen, R., & Mulcué-Nieto, L. (2020). Potencial de irradiación solar para generar electricidad en el departamento del Putumayo de Colombia. Revista UIS Ingenierías, 19 (3), 153–161. https://doi.org/10.18273/revuin.v19n3-2020015

Maechler, M., Stahel, W., Ruckstuhl, A., Keller, C., Halvorsen, K., Houser, A., Buser, C., Gygax, L., Venables, B., Plate, T., Flckiger, I., Wolbers, M., Keller, M., & Dudoit, S. (2016). sfsmisc: Utilities from “Seminar fuer Statistik” ETH Zurich R package version 1.1-0. doi: https://cran.r-project.org/package=sfsmisc

Mirai Solutions GmbH. (2017). XLConnect: Excel Connector for R (R package version 0.2-13).

Noriega-Angarita, E., Sousa-Santos, V., Quintero-Duran, M., & Gil-Arrieta, C. (2016). Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks. International Journal of Engineering and Technology, 8 (4), 1817–1825. https://doi.org/10.21817/ijet/2016/v8i4/160804234

Paulescu, M., Stefu, N., Calinoiu, D., Paulescu, E., Pop, N., Boata, R., & Mares, O. (2016). Ångström-Prescott equation: Physical basis, empirical models and sensitivity analysis. Renewable and Sustainable Energy Reviews, 62, 495–506. https://doi.org/10.1016/j.rser.2016.04.012

Quej, V. H., Almorox, J., Ibrakhimov, M., & Saito, L. (2016). Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico. Energy Conversion and Management, 110, 448–456. https://doi.org/10.1016/j.enconman.2015.12.050

Smets, A., Jäger, K., Isabella, O., VanSwaaij, R., & Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems 1st ed. UIT Cambridge Ltd.

Unidad de Planeación Minero Energética, UPME. (2015). Integración de las energías renovables no convencionales en Colombia. Recuperado de: http://www.upme.gov.co/Estudios/2015/Integracion_Energias_Renovables/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf

Urrego-Ortiz, J., Martínez, J. A., Arias, P. A., & Jaramillo-Duque, Á. (2019). Assessment and day-ahead forecasting of hourly solar radiation in Medellín, Colombia. Energies, 12 (22), 4402. https://doi.org/10.3390/en12224402

Vélez-Pereira, A. M., Vergara-Vásquez, E. L., Barraza-Coronell, W. D., & Agudelo-Yepes, D. C. (2015). Evaluación de un modelo estadístico para estimar la radiación solar en Magdalena, Colombia. TecnoLógicas, 18 (35), 35–44. https://doi.org/10.22430/22565337.196

Wang, J., Wang, E., Yin, H., Feng, L., & Zhao, Y. (2015). Differences between observed and calculated solar radiations and their impact on simulated crop yields. Field Crops Research, 176, 1–10. https://doi.org/10.1016/j.fcr.2015.02.014

Yaniktepe, B., & Genc, Y. A. (2015). Establishing new model for predicting the global solar radiation on horizontal surface. International Journal of Hydrogen Energy, 40 (44), 15278–15283. https://doi.org/10.1016/j.ijhydene.2015.02.064

Zeileis, A., & Grothendieck, G. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14 (6), 1–27. http://arxiv.org/abs/math/0505527

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.