Microwave-assisted hydrodistillation of essential oil of Cúrcuma longa (rhizomes): response surface optimization
Abstract
The properties of the plants of the Zingiberaceae family are widely known worldwide, in traditional medicine, as anti-inflammatory, antioxidant, antiviral, among others. Framed in the high biochemical value of this family, this research focused on the optimization of extracting essential oils method from Curcuma longa dry rhizomes collected in the Department of Quindío (Colombia), using microwave-assisted hydrodistillation and evaluating variables optimized by response surfaces. The results obtained from the optimization showed a considerable improvement in the oils extraction from some aspects and variables, compared to conventional hydrodistillation. The yield of essential increased by 32%, in α-Turmerone as the most abundant component there was by 31%, the extraction time was reduced from 120 to 59 minutes, and the energy consumption and CO2 emission were reduced by one third. These interesting results encourage the potential improvement of possible applications in health, food or cosmetics.
Keywords
essential oil;, Cúrcuma longa;, hydrodistillation;, optimization
Author Biography
José Leonardo Cano-Botero
Químico, Estudiante de Maestría en Química
yeferson Ospina-Balvuena
Químico, Estudiante de Maestría en Química
Jorge Andrés Gutiérrez-Cifuentes
Químico, Doctor en Ciencias Químicas
Eunice Ríos-Vásquez
Química, Doctora en Ciencias Químicas
References
- Adams, P. R. (2017). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. USA: Allured Publishing Corporation.
- Ait Amer Meziane, I., Maizi, N., Abatzoglou, N., & Benyoussef, E. H. (2020). Modelling and optimization of energy consumption in essential oil extraction processes. Food and Bioproducts Processing, 119, 373–389. https://doi.org/10.1016/J.FBP.2019.11.018 DOI: https://doi.org/10.1016/j.fbp.2019.11.018
- Benmoussa, H., Béchohra, I., He, S., Elfalleh, W., & Chawech, R. (2023). Optimization of sonohydrodistillation and microwave assisted hydrodistillation by response surface methodology for extraction of essential oils from Cinnamomum cassia barks. Industrial Crops and Products, 192, 115995. https://doi.org/10.1016/J.INDCROP.2022.115995 DOI: https://doi.org/10.1016/j.indcrop.2022.115995
- Boudraa, H., Kadri, N., Mouni, L., & Madani, K. (2021). Microwave-assisted hydrodistillation of essential oil from fennel seeds: Optimization using Plackett–Burman design and response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 23, 100307. https://doi.org/10.1016/J.JARMAP.2021.100307 DOI: https://doi.org/10.1016/j.jarmap.2021.100307
- Conde-Hernández, L. A., Botello-Ojeda, A. G., Alonso-Calderón, A. A., Osorio-Lama, M. A., Bernabé-Loranca, M. B., & Chávez-Bravo, E. (2021). Optimization of Extraction of Essential Oils using Response Surface Methodology: A Review. Https://Crai.Referencistas.Com:2093/10.1080/0972060X.2021.1976286, 1–46. https://doi.org/10.1080/0972060X.2021.1976286 DOI: https://doi.org/10.1080/0972060X.2021.1976286
- Chen, Y., Xu, F., Pang, M., Jin, X., Lv, H., Li, Z., & Lee, M. (2022). Microwave-assisted hydrodistillation extraction based on microwave-assisted preparation of deep eutectic solvents coupled with GC-MS for analysis of essential oils from clove buds. Sustainable Chemistry and Pharmacy, 27, 100695. https://doi.org/10.1016/J.SCP.2022.100695 DOI: https://doi.org/10.1016/j.scp.2022.100695
- De Souza Tavares, W., Akhtar, Y., Gonçalves, G. L. P., Zanuncio, J. C., & Isman, M. B. (2016). Turmeric powder and its derivatives from Curcuma longa rhizomes: Insecticidal effects on cabbage looper and the role of synergists. Scientific Reports, 6 (1), 1–11. https://doi.org/10.1038/SREP34093 DOI: https://doi.org/10.1038/srep34093
- Drinić, Z., Pljevljakušić, D., Janković, T., Zdunić, G., Bigović, D., & Šavikin, K. (2021). Hydro-distillation and microwave-assisted distillation of Sideritis raeseri: Comparison of the composition of the essential oil, hydrolat and residual water extract. Sustainable Chemistry and Pharmacy, 24, 100538. https://doi.org/10.1016/J.SCP.2021.100538 DOI: https://doi.org/10.1016/j.scp.2021.100538
- Filly, A., Fabiano-Tixier, A. S., Louis, C., Fernandez, X., & Chemat, F. (2016). Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. Comptes Rendus Chimie, 19 (6), 707–717. https://doi.org/10.1016/J.CRCI.2016.01.018 DOI: https://doi.org/10.1016/j.crci.2016.01.018
- Hearunyakij, M., & Phutdhawong, W. (2022). Optimization, Yield and Chemical Composition of Essential Oil from Kaempferia galanga L. Rhizome: Comparative Study with Microwave Assisted Extraction and Hydrodistillation. Journal of Essential Oil-Bearing Plants, 25 (3), 444–455. https://doi.org/10.1080/0972060X.2022.2108727 DOI: https://doi.org/10.1080/0972060X.2022.2108727
- Jeyaratnam, N., Nour, A. H., Kanthasamy, R., Nour, A. H., Yuvaraj, A. R., & Akindoyo, J. O. (2016). Essential oil from Cinnamomum cassia bark through hydrodistillation and advanced microwave assisted hydrodistillation. Industrial Crops and Products, 92, 57–66. https://doi.org/10.1016/J.INDCROP.2016.07.049 DOI: https://doi.org/10.1016/j.indcrop.2016.07.049
- Kazemi, M., Niazi, A., & Yazdanipour, A. (2021). Extraction of Satureja Rechingeri volatile components through ultrasound-assisted and microwave-assisted extractions and comparison of the chemical composition with headspace solid-phase microextraction. Https://Crai.Referencistas.Com:2093/10.1080/10412905.2021.1975575. https://doi.org/10.1080/10412905.2021.1975575 DOI: https://doi.org/10.1080/10412905.2021.1975575
- Kutti-Gounder, D., & Lingamallu, J. (2012). Comparison of chemical composition and antioxidant potential of volatile oil from fresh, dried and cured turmeric (Curcuma longa) rhizomes. Industrial Crops and Products, 38 (1), 124–131. https://doi.org/10.1016/j.indcrop.2012.01.014 DOI: https://doi.org/10.1016/j.indcrop.2012.01.014
- Lainez-Cerón, E., Jiménez-Munguía, M. T., López-Malo, A., & Ramírez-Corona, N. (2021). Effect of process variables on heating profiles and extraction mechanisms during hydrodistillation of eucalyptus essential oil. Heliyon, 7 (10), e08234. https://doi.org/10.1016/J.HELIYON.2021.E08234 DOI: https://doi.org/10.1016/j.heliyon.2021.e08234
- Liu, Z., Deng, B., Li, S., & Zou, Z. (2018). Optimization of solvent-free microwave assisted extraction of essential oil from Cinnamomum camphora leaves. Industrial Crops and Products, 124, 353–362. https://doi.org/10.1016/j.indcrop.2018.08.016 DOI: https://doi.org/10.1016/j.indcrop.2018.08.016
- López-Hortas, L., Falqué, E., Domínguez, H., & Torres, M. D. (2020). Microwave hydrodiffusion and gravity versus conventional distillation for Acacia dealbata flowers. Recovery of bioactive extracts for cosmetic purposes. Journal of Cleaner Production, 274, 123143. https://doi.org/10.1016/J.JCLEPRO.2020.123143 DOI: https://doi.org/10.1016/j.jclepro.2020.123143
- Mallmann, C. A., Brugnari, T., Abreu Filho, B. A. de, Mikcha, J. M. G., & Machinski, M. (2017). Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control, 73, 806–813. https://doi.org/10.1016/J.FOODCONT.2016.09.032 DOI: https://doi.org/10.1016/j.foodcont.2016.09.032
- Modi, P. I., Parikh, J. K., & Desai, M. A. (2021). Intensified approach towards isolation of cinnamon oil using microwave radiation: parametric, optimization and comparative studies. Industrial Crops and Products, 173, 114088. https://doi.org/10.1016/J.INDCROP.2021.114088 DOI: https://doi.org/10.1016/j.indcrop.2021.114088
- Mokhtarikhah, G., Ebadi, M. T., & Ayyari, M. (2020). Qualitative changes of spearmint essential oil as affected by drying methods. Industrial Crops and Products, 153, 112492. https://doi.org/10.1016/J.INDCROP.2020.112492 DOI: https://doi.org/10.1016/j.indcrop.2020.112492
- Mollaei, S., Sedighi, F., Habibi, B., Hazrati, S., & Asgharian, P. (2019). Extraction of essential oils of Ferulago angulata with microwave-assisted hydrodistillation. Industrial Crops and Products, 137, 43–51. https://doi.org/10.1016/j.indcrop.2019.05.015 DOI: https://doi.org/10.1016/j.indcrop.2019.05.015
- Radivojac, A., Bera, O., Micić, D., Đurović, S., Zeković, Z., Blagojević, S., & Pavlić, B. (2020). Conventional versus microwave-assisted hydrodistillation of sage herbal dust: Kinetics modeling and physico-chemical properties of essential oil. Food and Bioproducts Processing, 123, 90–101. https://doi.org/10.1016/j.fbp.2020.06.015 DOI: https://doi.org/10.1016/j.fbp.2020.06.015
- Rajkumari, S., & Sanatombi, K. (2018). Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. Https://Doi-Org.Crai.Referencistas.Com/10.1080/10942912.2017.1387556, 20, S2668–S2687. https://doi.org/10.1080/10942912.2017.1387556 DOI: https://doi.org/10.1080/10942912.2017.1387556
- Ray, A., Mohanty, S., Jena, S., Sahoo, A., Acharya, L., Panda, P. C., Sial, P., Duraisamy, P., & Nayak, S. (2021). Drying methods affects physicochemical characteristics, essential oil yield and volatile composition of turmeric (Curcuma longa L.). Journal of Applied Research on Medicinal and Aromatic Plants, 100357. https://doi.org/10.1016/J.JARMAP.2021.100357 DOI: https://doi.org/10.1016/j.jarmap.2021.100357
- Sahoo, A., Kar, B., Jena, S., Dash, B., Ray, A., Sahoo, S., & Nayak, S. (2019). Qualitative and Quantitative Evaluation of Rhizome Essential Oil of Eight Different Cultivars of Curcuma longa L. (Turmeric). Https://Doi-Org.Crai.Referencistas.Com/10.1080/0972060X.2019.1599734, 22(1), 239–247. https://doi.org/10.1080/0972060X.2019.1599734 DOI: https://doi.org/10.1080/0972060X.2019.1599734
- Singh, G., Kapoor, I. P. S., Singh, P., de Heluani, C. S., de Lampasona, M. P., & Catalán, C. A. N. (2010). Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food and Chemical Toxicology, 48 (4), 1026–1031. https://doi.org/10.1016/J.FCT.2010.01.015 DOI: https://doi.org/10.1016/j.fct.2010.01.015
- Solanki, K. P., Desai, M. A., & Parikh, J. K. (2019). Microwave intensified extraction: A holistic approach for extraction of citronella oil and phenolic compounds. Chemical Engineering and Processing - Process Intensification, 146, 107694. https://doi.org/10.1016/j.cep.2019.107694 DOI: https://doi.org/10.1016/j.cep.2019.107694
- Villegas, C., Perez, R., Sterner, O., González-Chavarria, I., & Paz, C. (2021). Curcuma as an adjuvant in colorectal cancer treatment. Life Sciences, 286, 120043. https://doi.org/10.1016/J.LFS.2021.120043 DOI: https://doi.org/10.1016/j.lfs.2021.120043
- Yue, G. G. L., Kwok, H. F., Lee, J. K. M., Jiang, L., Chan, K. M., Cheng, L., Wong, E. C. W., Leung, P. C., Fung, K. P., & Lau, C. B. S. (2015). Novel anti-angiogenic effects of aromatic-turmerone, essential oil isolated from spice turmeric. Journal of Functional Foods, 15, 243–253. https://doi.org/10.1016/J.JFF.2015.03.030 DOI: https://doi.org/10.1016/j.jff.2015.03.030
- Zhang, H., Lou, Z., Chen, X., Cui, Y., Wang, H., Kou, X., & Ma, C. (2019). Effect of simultaneous ultrasonic and microwave assisted hydrodistillation on the yield, composition, antibacterial and antibiofilm activity of essential oils from Citrus medica L. var. sarcodactylis. Journal of Food Engineering, 244, 126–135. https://doi.org/10.1016/J.JFOODENG.2018.09.014 DOI: https://doi.org/10.1016/j.jfoodeng.2018.09.014
- Zhang, L., Liang, X., Ou, Z., Ye, M., Shi, Y., Chen, Y., Zhao, J., Zheng, D., & Xiang, H. (2020). Screening of chemical composition, anti-arthritis, antitumor and antioxidant capacities of essential oils from four Zingiberaceae herbs. Industrial Crops and Products, 149, 112342. https://doi.org/10.1016/J.INDCROP.2020.112342 DOI: https://doi.org/10.1016/j.indcrop.2020.112342
- Zhang, L., Yang, Z., Chen, F., Su, P., Chen, D., Pan, W., Fang, Y., Dong, C., Zheng, X., & Du, Z. (2017). Composition and bioactivity assessment of essential oils of Curcuma longa L. collected in China. Industrial Crops and Products, 109, 60–73. https://doi.org/10.1016/J.INDCROP.2017.08.009 DOI: https://doi.org/10.1016/j.indcrop.2017.08.009
- Zheng, Y., Pan, C., Zhang, Z., Luo, W., Liang, X., Shi, Y., Liang, L., Zheng, X., Zhang, L., & Du, Z. (2020). Antiaging effect of Curcuma longa L. essential oil on ultraviolet-irradiated skin. Microchemical Journal, 154, 104608. https://doi.org/10.1016/j.microc.2020.104608 DOI: https://doi.org/10.1016/j.microc.2020.104608