Trends and emerging areas in scientific research on hydroelectric power: a bibliometric analysis (2014-2023)

Abstract
The objective of this article is to analyze the trends and emerging areas in scientific research on the environmental impacts of hydroelectric plants, through a bibliometric analysis of the literature published between 2014 and 2023. The results show a notable increase in scientific production on hydroelectric plants starting in 2020, with China and the United States as the most productive countries. The centrality of issues such as climate change and sustainability is highlighted, with emphasis on the cumulative impacts of small hydroelectric plants, especially in the Amazon region. The thematic map identifies renewable energy and sustainable development as priority areas for future research, while community engagement and machine learning emerge as promising fields requiring further exploration. The above means greater availability of data and knowledge for policymakers and environmental managers, facilitating the implementation of more informed and sustainable management strategies.
Keywords
hydroelectric plants, renewable energy, community perception, climate change
Author Biography
Esther Julia Olaya-Marín
Ingeniera Agroecóloga, Doctora en Ingeniería del Agua y Medio Ambiente
Lizeth Juliana Bolaños-Rodríguez
Psicóloga.
References
- Alseny, C., Diallo, M. L., Bayo, I., & L Keita, M. (2023). Impact of Climate Change in the Area Where the Kaleta Hydroelectric Power Plant is Implemented. International Journal of Science and Research (IJSR), 12(10). https://doi.org/10.21275/sr231015092301
- Bernard, E., Penna, L. A. O., & Araújo, E. (2014). Downgrading, downsizing, degazettement, and reclassification of protected areas in Brazil. Conservation Biology, 28(4). https://doi.org/10.1111/cobi.12298
- Carvalho, D. R., & Araújo, F. G. (2024). Heterogenisation of riverine ichthyofauna diversity by small hydropower dams. Ecology of Freshwater Fish, 33(3). https://doi.org/10.1111/eff.12775
- Cesoniene, L., Dapkiene, M., & Punys, P. (2021). Assessment of the impact of small hydropower plants on the ecological status indicators ofwater bodies: A case study in lithuania. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040433
- Flecker, A., Shi, Q., Almeida, R., Angarita, H., Gomes Selman, J., Garcia-Villacorta, R., Sethi, S., Thomas, S., Poff, N., Forsberg, B., Heilpern, S., Hamilton, S., Abad, J., Anderson, E., Barros, N., Bernal, I., Bernstein, R., Cañas, C., Dangles, O., & Gomes, C. (2022). Reducing adverse impacts of Amazon hydropower expansion. Science, 375, 753–760. https://doi.org/10.1126/science.abj4017
- Freitas, C. E., de Almeida Mereles, M., Pereira, D. V., Siqueira-Souza, F., Hurd, L., Kahn, J., Morais, G., & Sousa, R. G. C. (2022). Death by a thousand cuts: Small local dams can produce large regional impacts in the Brazilian Legal Amazon. Environmental Science and Policy, 136, 447–452. https://doi.org/10.1016/j.envsci.2022.07.013
- Huang, J., Guo, F., Burford, M. A., Kainz, M., Li, F., Gao, W., Ouyang, X., & Zhang, Y. (2024). How do small dams alter river food webs? A food quality perspective along the aquatic food web continuum. Journal of Environmental Management, 355. https://doi.org/10.1016/j.jenvman.2024.120501
- Jean Claude, Dr. M. (2022). Assessment of Effect of Hydropower Plant Projects on Socio-Environmental Sustenance and Development in Rwanda: A Review Done At Rubagabaga Hydropower Ltd. International Journal of Scientific Research and Management, 10(01). https://doi.org/10.18535/ijsrm/v10i1.em7
- Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D., & Garrote, L. (2021). Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition. In Renewable and Sustainable Energy Reviews (Vol. 142). https://doi.org/10.1016/j.rser.2021.110833
- Luo, Q., Li, S., Kinouchi, T., Wu, N., Fu, X., Ling, C., Cai, Q., Chiu, M.-C., & Resh, V. H. (2024). Existing levels of biodiversity and river location may determine changes from small hydropower developments. Journal of Environmental Management, 357, 120697. https://doi.org/https://doi.org/10.1016/j.jenvman.2024.120697
- Mayer, A., Lopez, M. C., Leturcq, G., & Moran, E. (2022). Changes in Social Capital Associated with the Construction of the Belo Monte Dam: Comparing a Resettled and a Host Community. Human Organization, 81(1). https://doi.org/10.17730/1938-3525-81.1.22
- Moldoveanu, M., Stănescu, S. V., & Gălie, A. C. (2023). Post-Construction, Hydromorphological Cumulative Impact Assessment: An Approach at the Waterbody Level Integrating Different Spatial Scales. Water (Switzerland), 15(3). https://doi.org/10.3390/w15030382
- Nava, F. R., Ishihara, J. H., Ravena, N., & Vilhena, K. do S. de S. (2021). Lack of knowledge or neglect? The contributions of science to mitigating the risks of small Brazilian dams. International Journal of Disaster Risk Reduction, 60. https://doi.org/10.1016/j.ijdrr.2021.102269
- Nickerson, S., Chen, G., Fearnside, P. M., Allan, C. J., Hu, T., de Carvalho, L. M. T., & Zhao, K. (2022). Forest loss is significantly higher near clustered small dams than single large dams per megawatt of hydroelectricity installed in the Brazilian Amazon. Environmental Research Letters, 17(8). https://doi.org/10.1088/1748-9326/ac8236
- Niță, M. R., Mitincu, C. G., & Nita, A. (2023). A river runs through it? Exploring the contestation of Environmental Impact Assessment procedures for small hydropower projects. Energy Research and Social Science, 96. https://doi.org/10.1016/j.erss.2023.102943
- Olaya-Marín, E.-J., Lemus-Portillo, C., Echavarría-Pedraza, M.-C., Chaparro-García, O.-A., Roa-Fuentes, C.-A., Salazar-Galán, S., & Barrios-Peña, M. (2022). Diferencias en el tamaño corporal y la abundancia de peces altoandinos, arriba y abajo de la represa Neusa, Colombia. Revista de Biología Tropical, 70(1), 464–481. https://doi.org/10.15517/REV.BIOL.TROP.2022.49776
- Premalatha, M., Tabassum-Abbasi, Abbasi, T., & Abbasi, S. A. (2014). A critical view on the eco-friendliness of small hydroelectric installations. Science of the Total Environment, 481(1). https://doi.org/10.1016/j.scitotenv.2013.11.047
- Qurani, A., & Adnan, R. (2023). The Role of Local Community and The Barriers to Participation in A Mini Hydro Energy Project in Indonesia. Indonesian Journal of Social Research (IJSR), 5(2). https://doi.org/10.30997/ijsr.v5i2.300
- Sun, S. (2023). Development of Hydropower and the Environmental Impacts of Hydroelectric Dam Construction in China. E3S Web of Conferences, 393. https://doi.org/10.1051/e3sconf/202339301032
- Ullah, A., Altay Topcu, B., Dogan, M., & Imran, M. (2024). Exploring the nexus among hydroelectric power generation, financial development, and economic growth: Evidence from the largest 10 hydroelectric power-generating countries. Energy Strategy Reviews, 52. https://doi.org/10.1016/j.esr.2024.101339
- Zhao, Z., Gong, X., Zhang, L., Jin, M., Cai, Y., & Wang, X. (2021). Riverine transport and water-sediment exchange of polycyclic aromatic hydrocarbons (PAHs) along the middle-lower Yangtze River, China. Journal of Hazardous Materials, 403. https://doi.org/10.1016/j.jhazmat.2020.123973
- Zhou, Y., Miao, Z., & Urban, F. (2020). China’s leadership in the hydropower sector: identifying green windows of opportunity for technological catch-up. Industrial and Corporate Change, 29(5), 1319–1343. https://doi.org/10.1093/icc/dtaa039
- Zhu, D., Yang, Z., Chen, X., Jin, Y., & Li, D. (2023). Development of a biotic integrity index based on long-term fish assemblage changes after dam construction in China. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1103801