Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Analysis of the added value for the quantitative reasoning competency at the Luis Amigó Catholic University in 2021

Resumen

En este trabajo se utilizan técnicas estadísticas para determinar el valor agregado de la competencia de Razonamiento Cuantitativo de los estudiantes de pregrado de la Universidad Católica Luis Amigó, Medellín, Colombia en el año 2021. La comparación estadística se realiza gráficamente en un plano cartesiano por quintiles utilizando las desviaciones estándar de los puntajes de la prueba Saber11 y la prueba institucional que se aplica en el quinto semestre de pregrado. El valor agregado solo se observa en los dos primeros quintiles, donde se acumula el 40% de las calificaciones más bajas; sin embargo, en este estudio aumenta el 4 % en el 20% de las calificaciones más altas. Además, se desarrolla un modelo predictivo para esta competencia y se verifica linealidad, normalidad, independencia de residuos, colinealidad y homocedasticidad. Finalmente, el modelo muestra resultados aceptables en la competencia de razonamiento cuantitativo de los estudiantes de la Universidad Católica Luis Amigó.

Palabras clave

razonamiento cuantitativo;, valor agregado;, educación;, lenguaje

PDF (English) XML (English)

Biografía del autor/a

Gabriel Jaime Posada-Hernández

Ingeniero Forestal, Magíster en Estudios Urbano Regionales

Mauricio López-Bonilla

Ingeniero Electrónico, Magíster en Ingeniería Eléctrica

Diego Alejandro Uribe-Suarez

Ingeniero Mecánico, Doctor en Mecánica Computacional y Materiales

Luis Fernando Cardona-Palacio

Ingeniero Químico, Doctor en Ingeniería


Citas

  1. Atashrouz, S., Mirshekar, H., & Hemmati-Sarapardeh, A. (2017). A soft-computing technique for prediction of water activity in PEG solutions. Colloid and Polymer Science, 295, 421-432. https://doi.org/10.1007/s00396-017-4017-9 DOI: https://doi.org/10.1007/s00396-017-4017-9
  2. Awofala, A. O., & Lawal, R. F. (2022). The relationship between critical thinking skills and quantitative reasoning among junior secondary school students in Nigeria. Jurnal Pendidikan Matematika (Kudus), 5(1), 1-16. http://dx.doi.org/10.21043/jpmk.v5i1.14011 DOI: https://doi.org/10.21043/jpmk.v5i1.14011
  3. Bonal, X., & González, S. (2020). The impact of lockdown on the learning gap: family and school divisions in times of crisis. International Review of Education, 66(5-6), 635-655. https://doi.org/10.1007/s11159-020-09860-z DOI: https://doi.org/10.1007/s11159-020-09860-z
  4. Bowers, J., Smith, W., Ren, L., & Hanna, R. (2017). Integrating active learning labs in precalculus: Measuring the value added. Investigations in Mathematics Learning, 11(1), 1-15. https://doi.org/10.1080/19477503.2017.1375355 DOI: https://doi.org/10.1080/19477503.2017.1375355
  5. Budhathoki, D. (2022). Formative Assessment in Postsecondary Quantitative Reasoning Courses. Ohio University.
  6. Campus virtual. (23 de abril de 2023). Universidad Católica Luis Amigó. https://virtual.ucatolicaluisamigo.edu.co/campus/
  7. Franco-Gallego, J. H. (2019). Educación superior en Colombia: relación entre valor agregado estudiantil y remuneraciones. Educación y Educadores, 22(1), 25-50. https://doi.org/10.5294/edu.2019.22.1.2 DOI: https://doi.org/10.5294/edu.2019.22.1.2
  8. Fernandes, V. D. C., Miranda, G. J., & Alexander, N. (2020). Value-added measures in higher education: a historical contextualization of Brazilian experiences. Revista Brasileira de Estudos Pedagógicos, 101, 691-720. https://doi.org/10.24109/2176-6681.rbep.101i259.4469 DOI: https://doi.org/10.24109/2176-6681.rbep.101i259.4469
  9. Gallardo-Pérez, H. de J., Vergel-Ortega, M., & Cordero-Díaz, M. C. (2021). Modelo de valor agregado en la formación matemática-física básica en estudiantes de ingeniería. Revista Boletín Redipe, 10(12), 528–536. https://doi.org/10.36260/rbr.v10i12.1608 DOI: https://doi.org/10.36260/rbr.v10i12.1608
  10. Hu, R., Wang, X., Liu, Z., Hou, J., Liu, Y., Tu, J., Jia, M., Liu, Y., & Zhou, H. (2020). Stigma, depression, and post-traumatic growth among Chinese stroke survivors: a longitudinal study examining patterns and correlations. Topics in Stroke Rehabilitation, 29(1), 16-29. https://doi.org/10.1080/10749357.2020.1864965 DOI: https://doi.org/10.1080/10749357.2020.1864965
  11. Instituto Colombiano para la evaluación de la Educación, ICFES. (23 de abril de 2023). Examen Saber11°. https://www.icfes.gov.co/web/guest/acerca-del-examen-saber-11%C2%B0
  12. Kar, S., Roy, K., & Leszczynski, J. (2018). Applicability domain: a step toward confident predictions and decidability for QSAR modeling. Computational Toxicology: Methods and Protocols, 141-169. https://doi.org/10.1007/978-1-4939-7899-1_6 DOI: https://doi.org/10.1007/978-1-4939-7899-1_6
  13. Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E., Michalewski, H., Ramasesh, V., Slone, A., Anil, C., Schlag, I., Gutman-Solo, T., Wu, Y., Neyshabur, B., Gur-Ari, G. & Misra, V. (2022). Solving quantitative reasoning problems with language models. arXiv, 1-54. https://doi.org/10.48550/arXiv.2206.14858
  14. Lyons, J. C., & Polychronopoulos, G. B. (2020). Exploring the Relationship between Types of Engagement and Value-added Scores in Undergraduate Students. Research & Practice in Assessment, 14, 32-43. https://www.rpajournal.com/exploring-the-relationship-between-types-of-engagement-and-value-added-scores-in-undergraduate-students/
  15. Mayes, R. L., Forrester, J. H., Christus, J. S., Peterson, F. I., Bonilla, R., & Yestness, N. (2014). Quantitative reasoning in environmental science: A learning progression. International Journal of Science Education, 36(4), 635-658. https://doi.org/10.1080/09500693.2013.819534 DOI: https://doi.org/10.1080/09500693.2013.819534
  16. Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons.
  17. Montoya, P. A., & Cogollo, S. N. (Eds.). (2018). Situaciones y retos de la investigación en Latinoamérica. Fondo Editorial Universidad Católica Luis Amigó. https://doi.org/10.21501/9789588943381 DOI: https://doi.org/10.21501/9789588943381
  18. Moriña, A. (2017). Inclusive education in higher education: challenges and opportunities. European Journal of Special Needs Education, 32(1), 3-17. https://doi.org/10.1080/08856257.2016.1254964 DOI: https://doi.org/10.1080/08856257.2016.1254964
  19. Oschwald, J., Guye, S., Liem, F., Rast, P., Willis, S., Röcke, C., Jäncke, L., Martin, M. & Mérillat, S. (2020). Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change. Reviews in the Neurosciences, 31(1), 1-57. https://doi.org/10.1515/revneuro-2018-0096 DOI: https://doi.org/10.1515/revneuro-2018-0096
  20. Ozaltun-Celik, A. (2021). A Calculus Student's Understanding of Graphical Approach to the Derivative through Quantitative Reasoning. LUMAT: International Journal on Math, Science and Technology Education, 9(1), 892-916. https://doi.org/10.31129/LUMAT.9.1.1663 DOI: https://doi.org/10.31129/LUMAT.9.1.1663
  21. Park, S., & Holloway, S. (2018). Parental Involvement in Adolescents' Education: An Examination of the Interplay among School Factors, Parental Role Construction, and Family Income. School Community Journal, 28(1), 9-36. https://eric.ed.gov/?id=EJ1184925
  22. Presidencia de la República. (17 de marzo de 2010). Decreto 869 de 2010, Por el cual se reglamenta el Examen de Estado de la Educación Media, ICFES-Saber11. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=39636
  23. Rodríguez-Revilla, R., & Vallejo-Molina, R. D. (2022). Valor agregado y las competencias genéricas de los estudiantes de educación superior en Colombia. Revista Iberoamericana de Educación Superior, 13(36), 44-62. https://doi.org/10.22201/iisue.20072872e.2022.36.1183 DOI: https://doi.org/10.22201/iisue.20072872e.2022.36.1183
  24. Rodgers, T. (2007). Measuring value added in higher education: A proposed methodology for developing a performance indicator based on the economic value added to graduates. Education Economics, 15(1), 55-74. https://doi.org/10.1080/09645290601133902 DOI: https://doi.org/10.1080/09645290601133902
  25. Schmidt, S., Zlatkin-Troitschanskaia, O., & Shavelson, R. J. (2023). Modeling and Measuring Domain-Specific Quantitative Reasoning in Higher Education Business and Economics. Frontline Learning Research, 11(1), 40-56. https://doi.org/10.14786/flr.v11i1.885 DOI: https://doi.org/10.14786/flr.v11i1.885
  26. Tirre, W. C., & Pena, C. M. (1993). Components of quantitative reasoning: General and group ability factors. Intelligence, 17(4), 501-521. https://doi.org/10.1016/0160-2896(93)90015-W DOI: https://doi.org/10.1016/0160-2896(93)90015-W
  27. Universidad Católica Luis Amigó. (23 de abril de 2023). Página web principal. https://www.funlam.edu.co/
  28. Upmeier zu Belzen, A., Engelschalt, P., & Krüger, D. (2021). Modeling as scientific reasoning-The role of abductive reasoning for Modeling competence. Education Sciences, 11(9), 495. https://doi.org/10.3390/educsci11090495 DOI: https://doi.org/10.3390/educsci11090495
  29. Wu, M., Xu, W., Yao, Y., Zhang, L., Guo, L., Fan, J., & Chen, J. (2020). Mental health status of students’ parents during COVID-19 pandemic and its influence factors. General Psychiatry, 33(4), 1-9. https://doi.org/10.1136/gpsych-2020-100250 DOI: https://doi.org/10.1136/gpsych-2020-100250

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.