Materias primas críticas y complejidad económica en América Latina

Juan Sebastián Lara Rodríguez, André Tosi Furtado, Aleix Altimiras-Martin



Resumen


Existen minerales dinamizadores de crecimiento económico, fundamentales para el desarrollo de tecnologías sostenibles. Estas materias primas críticas (MPC) son determinadas por modelos creados para economías complejas. El objetivo de este artículo es examinar las políticas minerales de materias primas críticas en las principales economías de América Latina, y el papel de sus respectivos sistemas nacionales de innovación (SNI), en búsqueda de mayor complejidad económica, mediante un método de evaluación comparativo aplicado a la política mineral de las principales naciones de esta zona —Brasil, México, Argentina, Colombia y Chile—. Descubrimos que debido a la simplicidad de estas economías y de políticas minerales que desestiman sus respectivos sistemas nacionales de innovación, se compromete el aumento de la complejidad económica de los Estados en cuestión, la cual se caracteriza por la precaria adición de valor mediante la interacción de conocimiento y capacidades en relación con sus recursos minerales e industria. 


Palabras clave


recursos minerales, recursos naturales no renovables, desarrollo económico, innovación, tecnologías sostenibles.

Texto completo:

PDF

Referencias


Abramczyk, H. (2005). Introduction to Laser Spectroscopy (First). Amsterdam: Elsevier B.V. http://doi.org/10.1016/B978-044451662-6/50014-9

Altimiras-Martin, A. (2014). Analysing the Structure of the Economy Using Physical Input–Output Tables. Economic Systems Research, 26(4), 463–485. http://doi.org/10.1080/09535314.2014.950637

Alves, A. R., & Coutinho, A. dos R. (2015). The Evolution of the Niobium Production in Brazil. Materials Research, 18(1), 106–112. http://doi.org/10.1590/1516-1439.276414

Auty, R. M. (2003). Natural resources, development models and sustainable development. In International Institute for Environment and Development, Environmental Economics Programe (pp. 0–25). Stevenage, UK: Earthprint Limited. Retrieved from http://eprints.lancs.ac.uk/9356/

Auty, R. M. (2007). The resources curse and sustainable development. In G. Atkinson, S. Dietz, & E. Neumayer (Eds.), Handbook of Sustainable Development (Vol. I, pp. 207–219). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.

Babar, I. M., Sabran, M. B. S., Jusoh, Z., Ahmad, H., Harun, S. W., Halder, A., … Bhadra, S. K. (2014). Double-clad thulium/ytterbium co-doped octagonal-shaped fibre for fibre laser applications 1. Ukrainian Journal of Physical Optics, 15(4), 173–184.

Becker, P. C., Olsson, N. A., & Simpson, J. R. (1999). Introduction. In Erbium-Doped Fiber Amplifiers (First, pp. 1–11). London, GBR: Academic Press. http://doi.org/10.1016/B978-012084590-3/50003-X

Bescher, E., Robson, S. R., Mackenzie, J. D., Patt, B., Iwanczyk, J., & Hoffman, E. J. (2000). New lutetium silicate scintillators. Journal of Sol-Gel Science and Technology, 19(3), 325–328. http://doi.org/10.1023/A:1008785616233

British Geological Survey. (2011). Tungsten profile. Nottingham. Retrieved from www.MineralsUK.com

Brown, A. (2013). By the numbers: critical materials--weak spot for the U.S.? Mechanical Engineering [Serial Online], 135(5), 28–29. Retrieved from Business Source Complete, Ipswich, MA. Accessed July 2, 2014.

Brumme, A. (2014). Wind Energy Deployment and the Relevance of Rare Earths - An Economic Analysis. In Wind Energy Deployment and the Relevance of Rare Earths, An Economic Analysis (1st ed.). Berlin: Springer Fachmedien Wiesbaden. http://doi.org/10.1007/978-3-658-04913-3

Busch, J., Steinberger, J. K., Dawson, D. a, Purnell, P., & Roelich, K. (2014). Managing critical materials with a technology-specific stocks and flows model. Environmental Science & Technology, 48(2), 1298–305. http://doi.org/10.1021/es404877u

Chakhmouradian, A. R., Smith, M. P., & Kynicky, J. (2015). From “strategic” tungsten to “green” neodymium: A century of critical metals at a glance. Ore Geology Reviews, 64, 455–458. http://doi.org/10.1016/j.oregeorev.2014.06.008

Comisión Chilena del Cobre. (2014). Identificación de insumos críticos para el desarrollo de la minería en Chile. Santiago de Chile. Retrieved from http://www.cochilco.cl/descargas/estudios/informes/Insumos Críticos/Estudio_de_Insumos_Criticos_en_la_Mineria_Chilena_VF.pdf

Csikósoya, A., Ćulkoya, K., & Antośoya, M. (2013). Magnesite industry in the Slovak Republic. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 29(3). http://doi.org/10.2478/gospo-2013-0028

Dosi, G. (1982). Technological paradigsm and tecnological trajectories. Research Policy, 11, 147–162. http://doi.org/https://doi.org/10.1016/0048-7333(82)90016-6

Du, X., & Graedel, T. E. (2013). Uncovering the end uses of the rare earth elements. The Science of the Total Environment, 461–462, 781–4. http://doi.org/10.1016/j.scitotenv.2013.02.099

Engholm, M., & Norin, L. (2008). Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass. Optics Express, 16, 1260–1268. http://doi.org/10.1364/OE.16.001260

Erdmann, L., & Graedel, T. E. (2011). Criticality of non-fuel minerals: A review of major approaches and analyses. Environmental Science and Technology, 45, 7620–7630. http://doi.org/10.1021/es200563g

European Commission. (2014). Report on critical raw materials for the EU, Report of the Ad hoc Working Group on defining critical raw materials. Brussels. Retrieved from http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/crm-report-on-critical-raw-materials_en.pdf

Fromer, N. a., & Diallo, M. S. (2013). Nanotechnology and clean energy: sustainable utilization and supply of critical materials. Journal of Nanoparticle Research, 15(11), 1–15. http://doi.org/10.1007/s11051-013-2011-9

Glöser, S., Tercero, L., Gandenberger, C., & Faulstich, M. (2015). Raw material criticality in the context of classical risk assessment. Resources Policy, 44, 35–46.

Goe, M., & Gaustad, G. (2014). Identifying critical materials for photovoltaics in the US: A multi-metric approach. Applied Energy, 123, 387–396. http://doi.org/10.1016/j.apenergy.2014.01.025

Goonan, T. (2011). Rare Earth Elements — End Use and Recyclability. Reston, Virginia: U.S. Geological Survey Scientific Investigations Report 2011–5094. Retrieved from http://pubs.usgs.gov/sir/2011/5094/

Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., … Zhu, C. (2012). Methodology of metal criticality determination. Environmental Science and Technology, 46(2), 1063–1070. http://doi.org/10.1021/es203534z

Granda, M., Blanco, C., Alvarez, P., Patrick, J. W., & Menéndez, R. (2014). Chemicals from coal coking. Chemical Reviews, 114(3), 1608–1636. http://doi.org/10.1021/cr400256y

Gu, Y. F., Harada, H., & Ro, Y. (2004). Chromium and chromium-based alloys: Problems and possibilities for high-temperature service. Jom, 56(9), 28–33. http://doi.org/10.1007/s11837-004-0197-0

Gupta, V. K., Jain, R., Hamdan, a. J., Agarwal, S., & Bharti, A. K. (2010). A novel ion selective sensor for promethium determination. Analytica Chimica Acta, 681(1–2), 27–32. http://doi.org/10.1016/j.aca.2010.09.037

Halme, K., Piirainen, K., Vekinis, G., Ernst-Udo, S., & Viljamaa, K. (2012). Substitutionability of Critical Raw Materials. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. Brussels: European Union. http://doi.org/10.2861/53633

Hartwick, J. M. (1977). Intergenerational Equity and the Investing of Rents from Exhaustible Resources. American Economic Association, 67(5), 972–974. Retrieved from http://www.jstor.org/stable/1828079

Hausmann, R., Hidalgo, C. a., Bustos, S., Coscia, M., Chung, S., Jimenez, J., … Yildirim, M. (2014). The Atlas of Economic Complexity: Mapping Paths to Prosperity (2014th ed.). Cambridge, MA, USA: Harvard University and Masachussetts Institute of Technology. Retrieved from http://atlas.cid.harvard.edu/rankings/

Hein, J. R., Mizell, K., Koschinsky, A., & Conrad, T. a. (2013). Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, 1–14. http://doi.org/10.1016/j.oregeorev.2012.12.001

Hensel, N. D. (2011). Economic Challenges in the Clean Energy Supply Chain: The Market for Rare Earth Minerals and Other Critical Inputs. Business Economics, 46(3), 171–184. http://doi.org/10.1057/be.2011.17

Hidalgo, C. a, & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10570–10575. http://doi.org/10.1073/pnas.0900943106

Hoppstock, K., & Sures, B. (2004). Platinum-Group Metals. In E. Merian, M. Anke, & M. Stoeppler (Eds.), Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance (pp. 1047–1086). Weinheim, Germany: WILEY-VCH Verlag GmbH&Co. KGaA. http://doi.org/10.1002/9783527619634.ch41

Hort, N., Mathaudhu, S., Ncclameggham, N., & Alderman, M. (2013). Magnesium Technology 2013. (M. & M. S. (TMS) Magnesium Committee of the Light Metals Division of The Minerals, Ed.). San Antonio: Wiley.

Karl, T. L. (1997). Review The Paradox of Plenty: Oil Booms and Petro-States. Berkeley: University of California Press.

Köhler, A. R., Bakker, C., & Peck, D. (2013). Critical materials: a reason for sustainable education of industrial designers and engineers. European Journal of Engineering Education, 38(4), 441–451. http://doi.org/10.1080/03043797.2013.796341

La teo. (n.d.). Madrid: Alianza Editorial.

Lara-Rodríguez, J. S., & Bermúdez, J. I. (2011). Perspectiva de la política de innovación y su monitoreo en la Unión Europea , 2010-2020. Finanzas Y Política Económica, 3(2), 105–126. Retrieved from http://ideas.repec.org/a/col/000443/009853.html

Lara-Rodríguez, J. S., Rojas, C. A., & Martínez, J. A. (2015). Evolución organizacional : inducción socio-biológica para el entendimiento de la metáfora. AD-Minister, 26(enero-junio), 101–122. http://doi.org/10.17230/ad-minister.26.5

Lundvall, B. Å., Vang, J., Chaminade, J., & Chaminade, C. (2009). Innovation system research and developing countries. In B. Å. Lundvall, K. J. Joseph, C. Chaminade, & J. Vang (Eds.), Handbook of Innovation Systems and Developing Countries, Building Domestic Capabilities in a Global Setting (pp. 1–30). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.

Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43. http://doi.org/10.1016/j.resourpol.2012.07.001

McNeil, D. (2004). Beryllium. London, GBR. Retrieved from http://beryllium.eu/resources/Critical Material and Market Forces Literature/Beryllium Production and Outlook Roskill Mineral Sevices.pdf

Melcher, F., & Buchholz, P. (2014). Germanium. In G. Gunn (Ed.), Critical Metals Handbook (First, pp. 177–203). Nottingham. UK: John Wiley & Sons. http://doi.org/10.1002/9781118755341.ch8

Miller, M. (2010). Fluorspar. Mining Engineering, 62(6), 48–49. Retrieved from http://search.proquest.com/docview/578164423?accountid=8113

Ministério de Minas e Energia. (2011). Plano Nacional de Mineração 2030. Geologia, Mineração e Transformação Mineral. Brasilia. Retrieved from http://www.mme.gov.br/documents/1138775/1732821/Book_PNM_2030_2.pdf/f7cc76c1-2d3b-4490-9d45-d725801c3522

Ministerio de Minas y Energía. (2012). Resolución número 18 0102 de 30 enero de 2012 “Por la cual se determinan unos minerales de interés estratégico para el país.” Bogotá D.C.: República de Colombia. Retrieved from http://www.minminas.gov.co/documents/10180//23517//20337-10498.pdf

Ministerio de Minería. (2015). Ministerio de Minería - Cuenta Pública. Santiago de Chile. Retrieved from http://www.gob.cl/cuenta-publica/2015/sectorial/2015_sectorial_ministerio-mineria.pdf

Mishra, B., & Termsuksawad, P. (1999). Niobium. Review of Extraction, Processing, Propierties and Aplications of Reactive Metals, 83–134. http://doi.org/DOI: 10.1002/9781118788417.ch3

National Research Council of the National Academies. (2008). Minerals, critical minerals, and the U. S. economy. Washington, D.C.: National Academies Press : Washington, DC, United States. Retrieved from www.nap.edu

Nelson, R. R., & Winter, S. G. (1982). An evolutionary Theory of Economic Change. Cambridge, MA, USA: Harvard University Press.

Platias, S., Vatalis, K. I., & Charalabidis, G. (2013). Innovative Processing Techniques for the Production of a Critical Raw Material the High Purity Quartz. Procedia Economics and Finance, 5(13), 597–604. http://doi.org/10.1016/S2212-5671(13)00070-1

Ploeg, F. Van Der. (2011). Natural Resources: Curse or Blessing? Journal of Economic Literature, 49(2), 366–420. http://doi.org/10.1257/jel.49.2.366

Programa Nacional de Minería Alta Ley. (2016). Desde el cobre a la innovación. Roadmap Tecnológico 2015-2035. (Fundación Chile, Ed.). Santiago de Chile: A IMPRESORES.

República Argentina. (1887). Ley N° 1919 Código de Minería. Buenos Aires: Senado y Camara de Diputados. Retrieved from http://wp.cedha.net/wp-content/uploads/2011/10/ley-minera-argentina.pdf

Schwarz-Schampera, U. (2014). Indium. In G. Gunn (Ed.), Critical Metals handbook (First, Vol. 11, pp. 204–229). Nottingham. UK: John Wiley & Sons. http://doi.org/10.1002/9781118755341.ch9

Secretaría de Economía. (2014). Programa de Desarrollo Minero 2013-2018. Ciudad de México. Retrieved from http://www.dof.gob.mx/nota_detalle.php?codigo=5344070&fecha=09/0

Secretaría de Política Económica y Planificación del Desarrollo. (2016). Informes de cadenas de valor: Minería Metalífera y Rocas de Aplicación. Buenos Aires. Retrieved from http://www.economia.gob.ar/peconomica/docs/ficha_litio_dic_2011.pdf

Senate Committee on Interior and Insular Affairs. (1954). Accessibility of strategic and critical materials to U.S. in time of war and for expanding economy. Accessibility of Strategic and Critical Materials to the United States in Time of War and for Our Expanding Economy. Report of the Committee on Interior and Insular Affairs Made by Its Minerals, Materials, and Fuels Economic Subcommittee pursuant to S. Re. Retrieved from http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edslns&AN=LNSD80B819B-90F7F8E3〈=es&site=eds-live

Sievers, H., Buijs, B., & Tercero Espinoza, L. a. (2012). Limits to the critical raw materials approach. Proceedings of the ICE - Waste and Resource Management, 165(4), 201–208. http://doi.org/10.1680/warm.12.00010

Slowinski, G., Latimer, D., & Mehlman, S. (2013). Research-on-Research: Dealing with Shortages of Critical Materials. Research-Technology Management, 56(5), 18–24. http://doi.org/10.5437/08956308X5605139

The World Bank. (2013). World Development Indicators: Science and technology. Washington, DC, USA: World Bank Group. Retrieved from http://wdi.worldbank.org/table/5.13

The World Bank. (2014). World Bank GDP Deflator. Retrieved May 28, 2016, from http://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG)

U.S. Geological Survey. (2015). Mineral Commodity Summaries 2015. Reston, Virginia. Retrieved from http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf

Unidad de Planeación Minero Energética. (2013). Plan Nacional De Desarrollo Minero 2010 - 2014. Bogotá D.C. Retrieved from http://www.upme.gov.co/Docs/pndm/2013/PNDM2014.pdf

Van Gosen, B., Verplanck, P., Long, K., Gambogi, J., Joseph, & Seal. (2014). The Rare-Earth Elements — Vital to Modern Technologies and Lifestyles. U.S. Geological Survey Fact Sheet 2014–3078. Reston, Virginia: U.S. Geological Survey Fact Sheet 2014–3078. http://doi.org/http://dx.doi.org/10.3133/fs20143078

World Commission on Environment and Development. (1987). Report of the World Commission on Environment and Development: Our Common Future (The Brundtland Report). Medicine, Conflict and Survival. http://doi.org/10.1080/07488008808408783

Wübbeke, J. (2013). Rare earth elements in China: Policies and narratives of reinventing an industry. Resources Policy, 38(3), 1–11. http://doi.org/10.1016/j.resourpol.2013.05.005

Ziemann, S., Grunwald, A., Schebek, L., Müller, D. b., & Weil, M. (2013). The future of mobility and its critical raw materials. Revue de Métallurgie, 110(1), 47–54. http://doi.org/10.1051/metal/2013052

Zimmermann, T., & Gößling-Reisemann, S. (2013). Critical materials and dissipative losses: a screening study. The Science of the Total Environment, 461–462, 774–80. http://doi.org/10.1016/j.scitotenv.2013.05.040


Métricas de artículo

Vistas de resumen
397




Cargando métricas ...
_

Enlaces refback

  • No hay ningún enlace refback.




La revista está autorizada por una licencia Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional

Apuntes del Cenes se encuentra en:

Scielo - ESCI (WoS)

Publindex - Redalyc - Latindex  - CLASE - Dialnet – DOAJ - EconLit - REDIB - Ideas Repec - DOTEC – EBSCO  - ProQuest - ERIH PLUSThe WZB library –  Actualidad Iberoamericana  -  VCU – Econpapers –  EconBib – Bibilat  -  Worldcat - Academia – EconBiz - Socionet - CrossRef - SHERPA ROMEO

Métricas:

Open Acces Spectrum Evaluation Tool

Scielo Analytics

Indicadores Redalyc

Ranking Rev-Sapiens 2017

Clasificación Integrada de Revistas Científicas – CIRC

Matriz de Información para el Análisis de Revistas

CitEc: Citations in Economics

Google Scholar

LogEc



UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
Sede Central Tunja–Boyacá–Colombia
Avenida Central del Norte 39-115
PBX: (57+8) 7405626
portalweb@uptc.edu.co Comentarios de este sitio
Horario de atención y servicio telefónico
8:00 a.m. a 12:00 m y 2:00 p.m a 6:00 p.m.

Atención al Ciudadano
Línea Gratuita: 01 8000 942024
Tel: (57+8) 7428263
quejas.reclamos@uptc.edu.co
Notificaciones Judiciales
Notificaciones de aviso

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional
Sistema OJS - Metabiblioteca |