Critical Raw Materials and Economic Complexity in Latin America




mineral resources, non-renewable resources, economic development, innovation, sustainable technologies.


There are minerals that boost economic growth and which are essential for the development of sustainable technologies. These critical raw materials (CRMs) were determined by models created for complex economies. This paper aims to examine the mineral policies regarding CRMs of the main Latin-American economies, and the role of their respective National Innovation Systems (NIS) in the pursuit of greater economic complexity. This is achieved through a comparative assessment method applied to the mineral policies of the principal nations of the region —Brazil, Mexico, Argentina, Colombia and Chile. In this way, we found that due to the simplicity
of these economies, as well as mineral policies that disregard their respective NIS, the increase of the economic complexity of the states in question is compromised. This is characterized by the exiguous value added through the interaction of knowledge and capabilities regarding their mineral resources and industry.


Download data is not yet available.

Author Biographies

Juan Sebastián Lara Rodríguez, Universidad Estatal de Campinas

Administrador de Empresas, Facultad de Ciencias Económicas, Universidad Pedagógica y Tecnológica de Colombia, Candidato a Magister en Política Científica y Tecnológica, Universidade Estadual de Campinas. Becario Consejo Nacional de Desarrollo Científico y Tecnológico

André Tosi Furtado, Universidad Estatal de Campinas

Economista, Magister y Doctor en Ciencias Económicas, Université Paris I Pantheón Sorbonne, Pos-Doctorado. Centre de Recherche Sur L'environnment et le Développement, Profesor Títular.

Aleix Altimiras-Martin, Universidad Estatal de Campinas

Ingeniero y Magister en Ingeniería Mecánica, Universitat Politecnica de Catalunya, Barcelona, y École Centrale de Paris, Doctor en Economía Agrícola, University of Cambridge, Profesor.


Abramczyk, H. (2005). Introduction to Laser Spectroscopy (First). Amsterdam: Elsevier B.V. DOI:

Altimiras-Martin, A. (2014). Analysing the Structure of the Economy Using Physical Input–Output Tables. Economic Systems Research, 26(4), 463–485. DOI:

Alves, A. R., & Coutinho, A. dos R. (2015). The Evolution of the Niobium Production in Brazil. Materials Research, 18(1), 106–112. DOI:

Auty, R. M. (2003). Natural resources, development models and sustainable development. In International Institute for Environment and Development, Environmental Economics Programe (pp. 0–25). Stevenage, UK: Earthprint Limited. Retrieved from DOI:

Auty, R. M. (2007). The resources curse and sustainable development. In G. Atkinson, S. Dietz, & E. Neumayer (Eds.), Handbook of Sustainable Development (Vol. I, pp. 207–219). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.

Babar, I. M., Sabran, M. B. S., Jusoh, Z., Ahmad, H., Harun, S. W., Halder, A., … Bhadra, S. K. (2014). Double-clad thulium/ytterbium co-doped octagonal-shaped fibre for fibre laser applications 1. Ukrainian Journal of Physical Optics, 15(4), 173–184. DOI:

Becker, P. C., Olsson, N. A., & Simpson, J. R. (1999). Introduction. In Erbium-Doped Fiber Amplifiers (First, pp. 1–11). London, GBR: Academic Press. DOI:

Bescher, E., Robson, S. R., Mackenzie, J. D., Patt, B., Iwanczyk, J., & Hoffman, E. J. (2000). New lutetium silicate scintillators. Journal of Sol-Gel Science and Technology, 19(3), 325–328. DOI:

British Geological Survey. (2011). Tungsten profile. Nottingham. Retrieved from

Brown, A. (2013). By the numbers: critical materials--weak spot for the U.S.? Mechanical Engineering [Serial Online], 135(5), 28–29. Retrieved from Business Source Complete, Ipswich, MA. Accessed July 2, 2014.

Brumme, A. (2014). Wind Energy Deployment and the Relevance of Rare Earths - An Economic Analysis. In Wind Energy Deployment and the Relevance of Rare Earths, An Economic Analysis (1st ed.). Berlin: Springer Fachmedien Wiesbaden. DOI:

Busch, J., Steinberger, J. K., Dawson, D. a, Purnell, P., & Roelich, K. (2014). Managing critical materials with a technology-specific stocks and flows model. Environmental Science & Technology, 48(2), 1298–305. DOI:

Chakhmouradian, A. R., Smith, M. P., & Kynicky, J. (2015). From “strategic” tungsten to “green” neodymium: A century of critical metals at a glance. Ore Geology Reviews, 64, 455–458. DOI:

Comisión Chilena del Cobre. (2014). Identificación de insumos críticos para el desarrollo de la minería en Chile. Santiago de Chile. Retrieved from Críticos/Estudio_de_Insumos_Criticos_en_la_Mineria_Chilena_VF.pdf

Csikósoya, A., Ćulkoya, K., & Antośoya, M. (2013). Magnesite industry in the Slovak Republic. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 29(3). DOI:

Dosi, G. (1982). Technological paradigsm and tecnological trajectories. Research Policy, 11, 147–162. DOI:

Du, X., & Graedel, T. E. (2013). Uncovering the end uses of the rare earth elements. The Science of the Total Environment, 461–462, 781–4. DOI:

Engholm, M., & Norin, L. (2008). Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass. Optics Express, 16, 1260–1268. DOI:

Erdmann, L., & Graedel, T. E. (2011). Criticality of non-fuel minerals: A review of major approaches and analyses. Environmental Science and Technology, 45, 7620–7630. DOI:

European Commission. (2014). Report on critical raw materials for the EU, Report of the Ad hoc Working Group on defining critical raw materials. Brussels. Retrieved from

Fromer, N. a., & Diallo, M. S. (2013). Nanotechnology and clean energy: sustainable utilization and supply of critical materials. Journal of Nanoparticle Research, 15(11), 1–15. DOI:

Glöser, S., Tercero, L., Gandenberger, C., & Faulstich, M. (2015). Raw material criticality in the context of classical risk assessment. Resources Policy, 44, 35–46. DOI:

Goe, M., & Gaustad, G. (2014). Identifying critical materials for photovoltaics in the US: A multi-metric approach. Applied Energy, 123, 387–396. DOI:

Goonan, T. (2011). Rare Earth Elements — End Use and Recyclability. Reston, Virginia: U.S. Geological Survey Scientific Investigations Report 2011–5094. Retrieved from DOI:

Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., … Zhu, C. (2012). Methodology of metal criticality determination. Environmental Science and Technology, 46(2), 1063–1070. DOI:

Granda, M., Blanco, C., Alvarez, P., Patrick, J. W., & Menéndez, R. (2014). Chemicals from coal coking. Chemical Reviews, 114(3), 1608–1636. DOI:

Gu, Y. F., Harada, H., & Ro, Y. (2004). Chromium and chromium-based alloys: Problems and possibilities for high-temperature service. Jom, 56(9), 28–33. DOI:

Gupta, V. K., Jain, R., Hamdan, a. J., Agarwal, S., & Bharti, A. K. (2010). A novel ion selective sensor for promethium determination. Analytica Chimica Acta, 681(1–2), 27–32. DOI:

Halme, K., Piirainen, K., Vekinis, G., Ernst-Udo, S., & Viljamaa, K. (2012). Substitutionability of Critical Raw Materials. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. Brussels: European Union.

Hartwick, J. M. (1977). Intergenerational Equity and the Investing of Rents from Exhaustible Resources. American Economic Association, 67(5), 972–974. Retrieved from

Hausmann, R., Hidalgo, C. a., Bustos, S., Coscia, M., Chung, S., Jimenez, J., … Yildirim, M. (2014). The Atlas of Economic Complexity: Mapping Paths to Prosperity (2014th ed.). Cambridge, MA, USA: Harvard University and Masachussetts Institute of Technology. Retrieved from DOI:

Hein, J. R., Mizell, K., Koschinsky, A., & Conrad, T. a. (2013). Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, 1–14. DOI:

Hensel, N. D. (2011). Economic Challenges in the Clean Energy Supply Chain: The Market for Rare Earth Minerals and Other Critical Inputs. Business Economics, 46(3), 171–184. DOI:

Hidalgo, C. a, & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10570–10575. DOI:

Hoppstock, K., & Sures, B. (2004). Platinum-Group Metals. In E. Merian, M. Anke, & M. Stoeppler (Eds.), Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance (pp. 1047–1086). Weinheim, Germany: WILEY-VCH Verlag GmbH&Co. KGaA. DOI:

Hort, N., Mathaudhu, S., Ncclameggham, N., & Alderman, M. (2013). Magnesium Technology 2013. (M. & M. S. (TMS) Magnesium Committee of the Light Metals Division of The Minerals, Ed.). San Antonio: Wiley. DOI:

Karl, T. L. (1997). Review The Paradox of Plenty: Oil Booms and Petro-States. Berkeley: University of California Press. DOI:

Köhler, A. R., Bakker, C., & Peck, D. (2013). Critical materials: a reason for sustainable education of industrial designers and engineers. European Journal of Engineering Education, 38(4), 441–451. DOI:

La teo. (n.d.). Madrid: Alianza Editorial.

Lara-Rodríguez, J. S., & Bermúdez, J. I. (2011). Perspectiva de la política de innovación y su monitoreo en la Unión Europea , 2010-2020. Finanzas Y Política Económica, 3(2), 105–126. Retrieved from

Lara-Rodríguez, J. S., Rojas, C. A., & Martínez, J. A. (2015). Evolución organizacional : inducción socio-biológica para el entendimiento de la metáfora. AD-Minister, 26(enero-junio), 101–122. DOI:

Lundvall, B. Å., Vang, J., Chaminade, J., & Chaminade, C. (2009). Innovation system research and developing countries. In B. Å. Lundvall, K. J. Joseph, C. Chaminade, & J. Vang (Eds.), Handbook of Innovation Systems and Developing Countries, Building Domestic Capabilities in a Global Setting (pp. 1–30). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing. DOI:

Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43. DOI:

McNeil, D. (2004). Beryllium. London, GBR. Retrieved from Material and Market Forces Literature/Beryllium Production and Outlook Roskill Mineral Sevices.pdf

Melcher, F., & Buchholz, P. (2014). Germanium. In G. Gunn (Ed.), Critical Metals Handbook (First, pp. 177–203). Nottingham. UK: John Wiley & Sons. DOI:

Miller, M. (2010). Fluorspar. Mining Engineering, 62(6), 48–49. Retrieved from

Ministério de Minas e Energia. (2011). Plano Nacional de Mineração 2030. Geologia, Mineração e Transformação Mineral. Brasilia. Retrieved from

Ministerio de Minas y Energía. (2012). Resolución número 18 0102 de 30 enero de 2012 “Por la cual se determinan unos minerales de interés estratégico para el país.” Bogotá D.C.: República de Colombia. Retrieved from

Ministerio de Minería. (2015). Ministerio de Minería - Cuenta Pública. Santiago de Chile. Retrieved from

Mishra, B., & Termsuksawad, P. (1999). Niobium. Review of Extraction, Processing, Propierties and Aplications of Reactive Metals, 83–134. 10.1002/9781118788417.ch3 DOI:

National Research Council of the National Academies. (2008). Minerals, critical minerals, and the U. S. economy. Washington, D.C.: National Academies Press : Washington, DC, United States. Retrieved from

Nelson, R. R., & Winter, S. G. (1982). An evolutionary Theory of Economic Change. Cambridge, MA, USA: Harvard University Press.

Platias, S., Vatalis, K. I., & Charalabidis, G. (2013). Innovative Processing Techniques for the Production of a Critical Raw Material the High Purity Quartz. Procedia Economics and Finance, 5(13), 597–604. DOI:

Ploeg, F. Van Der. (2011). Natural Resources: Curse or Blessing? Journal of Economic Literature, 49(2), 366–420. DOI:

Programa Nacional de Minería Alta Ley. (2016). Desde el cobre a la innovación. Roadmap Tecnológico 2015-2035. (Fundación Chile, Ed.). Santiago de Chile: A IMPRESORES.

República Argentina. (1887). Ley N° 1919 Código de Minería. Buenos Aires: Senado y Camara de Diputados. Retrieved from

Schwarz-Schampera, U. (2014). Indium. In G. Gunn (Ed.), Critical Metals handbook (First, Vol. 11, pp. 204–229). Nottingham. UK: John Wiley & Sons. DOI:

Secretaría de Economía. (2014). Programa de Desarrollo Minero 2013-2018. Ciudad de México. Retrieved from

Secretaría de Política Económica y Planificación del Desarrollo. (2016). Informes de cadenas de valor: Minería Metalífera y Rocas de Aplicación. Buenos Aires. Retrieved from

Senate Committee on Interior and Insular Affairs. (1954). Accessibility of strategic and critical materials to U.S. in time of war and for expanding economy. Accessibility of Strategic and Critical Materials to the United States in Time of War and for Our Expanding Economy. Report of the Committee on Interior and Insular Affairs Made by Its Minerals, Materials, and Fuels Economic Subcommittee pursuant to S. Re. Retrieved from

Sievers, H., Buijs, B., & Tercero Espinoza, L. a. (2012). Limits to the critical raw materials approach. Proceedings of the ICE - Waste and Resource Management, 165(4), 201–208. DOI:

Slowinski, G., Latimer, D., & Mehlman, S. (2013). Research-on-Research: Dealing with Shortages of Critical Materials. Research-Technology Management, 56(5), 18–24. DOI:

The World Bank. (2013). World Development Indicators: Science and technology. Washington, DC, USA: World Bank Group. Retrieved from

The World Bank. (2014). World Bank GDP Deflator. Retrieved May 28, 2016, from

U.S. Geological Survey. (2015). Mineral Commodity Summaries 2015. Reston, Virginia. Retrieved from DOI:

Unidad de Planeación Minero Energética. (2013). Plan Nacional De Desarrollo Minero 2010 - 2014. Bogotá D.C. Retrieved from

Van Gosen, B., Verplanck, P., Long, K., Gambogi, J., Joseph, & Seal. (2014). The Rare-Earth Elements — Vital to Modern Technologies and Lifestyles. U.S. Geological Survey Fact Sheet 2014–3078. Reston, Virginia: U.S. Geological Survey Fact Sheet 2014–3078. DOI:

World Commission on Environment and Development. (1987). Report of the World Commission on Environment and Development: Our Common Future (The Brundtland Report). Medicine, Conflict and Survival. DOI:

Wübbeke, J. (2013). Rare earth elements in China: Policies and narratives of reinventing an industry. Resources Policy, 38(3), 1–11. DOI:

Ziemann, S., Grunwald, A., Schebek, L., Müller, D. b., & Weil, M. (2013). The future of mobility and its critical raw materials. Revue de Métallurgie, 110(1), 47–54. DOI:

Zimmermann, T., & Gößling-Reisemann, S. (2013). Critical materials and dissipative losses: a screening study. The Science of the Total Environment, 461–462, 774–80. DOI:


  • Abstract
  • PDF (Español)
  • XML (Español)

How to Cite

Lara Rodríguez, J S, Tosi Furtado, A, & Altimiras-Martin, A. (2018). Critical Raw Materials and Economic Complexity in Latin America. Apuntes del Cenes, 37(65), 15–51.



Economic theory