Skip to main navigation menu Skip to main content Skip to site footer

Analysis of the Technological Maturity Cycle of Antibacterial and Self-cleaning Surfaces based on TiO2/ZnO

Abstract

The development of ceramic nanomaterials with self-cleaning properties is an important field of research since they can be used in different sectors such as the textile, aerospace, automotive and biomedical protection elements.

The objective of the work is to analyze and identify world trends in research, level of innovation, as well as emerging technologies in the development of TiO2/ ZnO nanoparticles with antibacterial and self-cleaning properties; based on the technological monitoring of patents and Scholarly works using bibliometric methods using Lens bibliometric analysis software.

The stages of technological development were estimated through the logistic model using the Loglet Lab4 software and the Yoon parameters, the Technological Maturity Rate (TMR), the potential patents to appear (EPP), the remaining lifetime (ERL) were calculated. four indicators were used: Granted patents (i1), patent applications (i2), scholarly Works (i3) and human capital (i4).

The technological trend of patents for the first period focused on the development of catalysis processes, while in period II on technology for the manufacture of cosmetics and disinfectants. In period III, nanotechnology applied in cosmetics and disinfection processes appeared, finally, in period IV a trend towards disinfection and coating processes was observed, as well as the number of patent applications for this period.

This technology of self-cleaning surfaces registered an average maturity rate of 72.3%, which is in a stage of maturity, being a technology classified as "leading technology" with the possibility of investment in the development of new products and processes.

Keywords

Lens, Titanium dioxide, zinc oxide, antifouling, antibacterial, forecasting technology

PDF (Español)

References

  1. H. Cheng et al., “The bifunctional regulation of interconnected Zn-incorporated ZrO2 nanoarrays in antibiosis and osteogenesis,” Biomater. Sci., vol. 3, no. 4, pp. 665–680, 2015, doi: 10.1039/c4bm00263f. DOI: https://doi.org/10.1039/C4BM00263F
  2. C. P. Betancur, V. Hernández Montes, and R. Buitrago Sierra, “Nanopartículas para materiales antibacterianos y aplicaciones del dióxido de titanio,” Rev. Cuba. Investig. Biomed., vol. 35, no. 4, pp. 366–381, 2016.
  3. C. Bouki, D. Venieri, and E. Diamadopoulos, “Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review,” Ecotoxicol. Environ. Saf., vol. 91, no. February, pp. 1–9, 2013, doi: 10.1016/j.ecoenv.2013.01.016. DOI: https://doi.org/10.1016/j.ecoenv.2013.01.016
  4. K. Szmajnta and M. M. Szindler, “Influence of uv radiation on tio2 nanoparticles antibacterial behaviour,” Arch. Mater. Sci. Eng., vol. 101, no. 1, pp. 25–31, 2020, doi: 10.5604/01.3001.0013.9503. DOI: https://doi.org/10.5604/01.3001.0013.9503
  5. Y. Xing, X. Li, X. Guo, W. Li, J. Chen, and Q. Liu, “Effects of Different TiO2 Nanoparticles Concentrations on the Physical and Antibacterial Activities of Chitosan-Based Coating Film.”
  6. Y. Xing et al., “Effect of TiO 2 nanoparticles on the antibacterial and physical properties of polyethylene-based film,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 219–224, 2012, doi: 10.1016/j.porgcoat.2011.11.005. DOI: https://doi.org/10.1016/j.porgcoat.2011.11.005
  7. L. Frunza et al., “Photocatalytic activity of wool fabrics deposited at low temperature with ZnO or TiO2 nanoparticles: Methylene blue degradation as a test reaction,” Catal. Today, vol. 306, pp. 251–259, 2018, doi: 10.1016/j.cattod.2017.02.044. DOI: https://doi.org/10.1016/j.cattod.2017.02.044
  8. A. A. Hebeish, M. M. Abdelhady, and A. M. Youssef, “TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile,” Carbohydr. Polym., vol. 91, no. 2, pp. 549–559, 2013, doi: 10.1016/j.carbpol.2012.08.068. DOI: https://doi.org/10.1016/j.carbpol.2012.08.068
  9. N. Sulong and A. Z. M. Rus, “Influence of TiO2 on selfclean bio coating,” Appl. Mech. Mater., vol. 315, pp. 399–403, 2013, doi: 10.4028/www.scientific.net/AMM.315.399. DOI: https://doi.org/10.4028/www.scientific.net/AMM.315.399
  10. T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake, “Photoelectrochemical sterilization of microbial cells by semiconductor powders,” FEMS Microbiol. Lett., vol. 29, no. 1–2, pp. 211–214, 1985, doi: 10.1111/j.1574-6968.1985.tb00864.x. DOI: https://doi.org/10.1111/j.1574-6968.1985.tb00864.x
  11. C. Xu, J. Zheng, and A. Wu, “Antibacterial applications of TiO2 nanoparticles,” TiO, pp. 105–132, 2020, doi: 10.1002/9783527825431.ch3. DOI: https://doi.org/10.1002/9783527825431.ch3
  12. Y. Wang, X. Xue, and H. Yang, “Modification of the antibacterial activity of Zn/TiO2 nano-materials through different anions doped,” Vacuum, vol. 101, pp. 193–199, 2014, doi: 10.1016/j.vacuum.2013.08.006. DOI: https://doi.org/10.1016/j.vacuum.2013.08.006
  13. S. Chang et al., “Mg2 TiO 4 spinel modified by nitrogen doping as a Visible-Light-Active photocatalyst for antibacterial activity,” Chem. Eng. J., vol. 410, no. January, p. 128410, 2021, doi: 10.1016/j.cej.2021.128410. DOI: https://doi.org/10.1016/j.cej.2021.128410
  14. R. S. Sonawane, B. B. Kale, and M. K. Dongare, “Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel dip coating,” Mater. Chem. Phys., vol. 85, no. 1, pp. 52–57, 2004, doi: 10.1016/j.matchemphys.2003.12.007. DOI: https://doi.org/10.1016/j.matchemphys.2003.12.007
  15. B. M. Huong, “APPLICATION OF SELF–CLEANING TREATMENT ON COTTON AND PES/CO FABRIC USING TiO2 AND SiO2 COATING SYNTHESIZED BY SOL–GEL METHOD,” Vietnam J. Sci. Technol., vol. 55, no. 1B, p. 77, 2018, doi: 10.15625/2525-2518/55/1b/12094. DOI: https://doi.org/10.15625/2525-2518/55/1B/12094
  16. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep., vol. 63, no. 12, pp. 515–582, 2008, doi: 10.1016/j.surfrep.2008.10.001. DOI: https://doi.org/10.1016/j.surfrep.2008.10.001
  17. N. T. Padmanabhan and H. John, “Titanium dioxide based self-cleaning smart surfaces: A short review,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104211, 2020, doi: 10.1016/j.jece.2020.104211. DOI: https://doi.org/10.1016/j.jece.2020.104211
  18. S. M. Gupta and M. Tripathi, “A review of TiO2 nanoparticles,” Chinese Sci. Bull., vol. 56, no. 16, pp. 1639–1657, 2011, doi: 10.1007/s11434-011-4476-1. DOI: https://doi.org/10.1007/s11434-011-4476-1
  19. M. Pelaez et al., “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B Environ., vol. 125, pp. 331–349, 2012, doi: 10.1016/j.apcatb.2012.05.036. DOI: https://doi.org/10.1016/j.apcatb.2012.05.036
  20. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein J. Nanotechnol., vol. 9, no. 1, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98. DOI: https://doi.org/10.3762/bjnano.9.98
  21. H. D. M. Villela, R. S. Peixoto, A. U. Soriano, and F. L. Carmo, “Microbial bioremediation of oil contaminated seawater: A survey of patent deposits and the characterization of the top genera applied,” Sci. Total Environ., vol. 666, pp. 743–758, 2019, doi: 10.1016/j.scitotenv.2019.02.153. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.153
  22. I. Hamidah, R. E. Pawinanto, B. Mulyanti, and J. Yunas, “A bibliometric analysis of micro electro mechanical system energy harvester research,” Heliyon, vol. 7, no. 3, p. e06406, 2021, doi: 10.1016/j.heliyon.2021.e06406. DOI: https://doi.org/10.1016/j.heliyon.2021.e06406
  23. F. Machuca-Martinez, R. C. Amado, and O. Gutierrez, “Coronaviruses: A patent dataset report for research and development (R&D) analysis,” Data Br., vol. 30, p. 105551, 2020, doi: 10.1016/j.dib.2020.105551. DOI: https://doi.org/10.1016/j.dib.2020.105551
  24. C. Ziegler, T. Sinigaglia, M. E. S. Martins, and A. M. Souza, “Technological advances to reduce apis mellifera mortality: A bibliometric analysis,” Sustain., vol. 13, no. 15, 2021, doi: 10.3390/su13158305. DOI: https://doi.org/10.3390/su13158305
  25. D. Kochetkov and M. Almaganbetov, “Using Patent Landscapes for Technology Benchmarking : A Case of 5G Networks,” pp. 20–28, 2021.
  26. H. Ernst, “The Use of Patent Data for Technological Forecasting: The Diffusion of CNC-Technology in the Machine Tool Industry,” Small Bus. Econ., vol. 9, no. 4, pp. 361–381, 1997, doi: 10.1023/A:1007921808138. DOI: https://doi.org/10.1023/A:1007921808138
  27. P. S. Meyer, J. W. Yung, and J. H. Ausubel, “A Primer on Logistic Growth and Substitution: The Mathematics of the Loglet Lab Software,” Technol. Forecast. Soc. Change, vol. 61, no. 3, pp. 247–271, 1999, doi: 10.1016/s0040-1625(99)00021-9. DOI: https://doi.org/10.1016/S0040-1625(99)00021-9
  28. J. Yoon, Y. Park, M. Kim, J. Lee, and D. Lee, “Tracing evolving trends in printed electronics using patent information,” J. Nanoparticle Res., vol. 16, no. 7, 2014, doi: 10.1007/s11051-014-2471-6. DOI: https://doi.org/10.1007/s11051-014-2471-6
  29. L. Gao et al., “Technology life cycle analysis method based on patent documents,” Technol. Forecast. Soc. Change, vol. 80, no. 3, pp. 398–407, 2013, doi: 10.1016/j.techfore.2012.10.003. DOI: https://doi.org/10.1016/j.techfore.2012.10.003
  30. M. Dehghanimadvar, R. Shirmohammadi, M. Sadeghzadeh, A. Aslani, and R. Ghasempour, “Hydrogen production technologies: Attractiveness and future perspective,” Int. J. Energy Res., vol. 44, no. 11, pp. 8233–8254, 2020, doi: 10.1002/er.5508. DOI: https://doi.org/10.1002/er.5508
  31. C. L. Æ. J. Wang, “Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis,” no. 152, pp. 21–36, 2010, doi: 10.1007/s11192-009-0055-5. DOI: https://doi.org/10.1007/s11192-009-0055-5
  32. X. Wu, “Application of Logistic Model in City Development Forecast,” Proc. 2017 2nd Int. Conf. Mater. Sci. Mach. Energy Eng. (MSMEE 2017), vol. 123, no. Msmee, pp. 706–710, 2017, doi: 10.2991/msmee-17.2017.137. DOI: https://doi.org/10.2991/msmee-17.2017.137
  33. G. Mao, H. Hu, X. Liu, J. Crittenden, and N. Huang, “A bibliometric analysis of industrial wastewater treatments from 1998 to 2019,” Environ. Pollut., vol. 275, p. 115785, 2021, doi: 10.1016/j.envpol.2020.115785. DOI: https://doi.org/10.1016/j.envpol.2020.115785
  34. M. E. Leitch, E. Casman, and G. V. Lowry, “Nanotechnology patenting trends through an environmental lens: Analysis of materials and applications,” J. Nanoparticle Res., vol. 14, no. 12, 2012, doi: 10.1007/s11051-012-1283-9. DOI: https://doi.org/10.1007/s11051-012-1283-9
  35. J. Yoon, B. Jeong, W. H. Lee, and J. Kim, “Tracing the Evolving Trends in Electronic Skin (e-Skin) Technology Using Growth Curve and Technology Position-Based Patent Bibliometrics,” IEEE Access, vol. 6, no. June, pp. 26530–26542, 2018, doi: 10.1109/ACCESS.2018.2834160. DOI: https://doi.org/10.1109/ACCESS.2018.2834160
  36. M. Baumann et al., “Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy,” Technol. Forecast. Soc. Change, vol. 165, no. January, 2021, doi: 10.1016/j.techfore.2020.120505. DOI: https://doi.org/10.1016/j.techfore.2020.120505
  37. B. Degroote and P. Held, “Analysis of the patent documentation coverage of the CPC in comparison with the IPC with a focus on Asian documentation,” World Pat. Inf., vol. 54, pp. S78–S84, 2018, doi: 10.1016/j.wpi.2017.10.001. DOI: https://doi.org/10.1016/j.wpi.2017.10.001
  38. R. James, J. Baker, A. Shih, and T. Hamouda, “Non-toxic antimicrobial composition and methods of use.”
  39. R. Dacey, R. Hyde, M. Ishikawa, and J. Kare, “US_8706211_B2 - Systems, devices and methods including catheters having self-cleaning surfaces.”
  40. “About Akeso Biomedical.” https://www.akesobiomedical.com/about.html (accessed Oct. 14, 2021).
  41. O. A. Jefferson et al., “Erratum: Mapping the global influence of published research on industry and innovation,” Nat. Biotechnol., vol. 36, no. 8, p. 772, 2018, doi: 10.1038/nbt0818-772a. DOI: https://doi.org/10.1038/nbt0818-772a
  42. Lens.org, “Support Center » Scholarly Search.” https://support.lens.org/help-resources/search/scholarly-search/ (accessed Oct. 04, 2021).
  43. LogletLab4, “Documentation Loglet Lab4.” https://logletlab.com/loglet/documentation/index (accessed Oct. 11, 2021).

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.