Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Análisis del Ciclo de Madurez Tecnológica de Superficies Antibacterianas y Autolimpiantes a base de TiO2/ZnO

Resumen

El desarrollo de nanomateriales cerámicos con propiedades autolimpiantes es un campo de investigación importante ya que pueden ser usados en diferentes sectores como la industria textil, aeroespacial, automotriz y en elementos de protección biomédica. En este contexto, el objetivo del trabajo es analizar e identificar las tendencias mundiales en investigación, nivel de innovación, así como las tecnologías emergentes en el desarrollo de nanopartículas de TiO2/ZnO con propiedades antibacteriales y autolimpiantes; a partir del seguimiento tecnológico de patentes y Trabajos académicos mediante el uso de métodos bibliométricos usando el software de análisis bibliométrico Lens.

Se estimaron las etapas de desarrollo tecnológico a través del modelo logístico usando el software Loglet Lab 4 y se calcularon los parámetros de Yoon, tasa de madurez tecnológica (TMR), patentes potenciales por aparecer (EPP), tiempo de vida remanente (ERL), con 4 indicadores definidos: Patentes otorgadas (i1), aplicaciones de patentes (i2), trabajos académicos (i3) y capital humano (i4).

La tendencia tecnológica de las patentes para el primer periodo (período I) se enfocaron en el desarrollo de procesos de catálisis, mientras que en el período II en tecnología de fabricación de cosméticos y desinfectantes. En el período III aparece la nanotecnología aplicada en cosméticos y procesos de desinfección, finalmente, en el período IV se observó una tendencia hacia los procesos de desinfección y recubrimientos, así como también la cantidad de aplicaciones de patentes para este período. Japón es el país líder en esta tecnología actualmente y la compañía Gearbox LLC encabeza la lista de mayor cantidad de patentes otorgadas.

Esta tecnología de superficies autolimpiantes registró en promedio una tasa de madurez del 51.48%, con lo cual se ubica en una etapa de madurez, siendo una tecnología catalogada en el inicio de su fase como “tecnología líder” con posibilidad de inversión en el desarrollo de   nuevos productos y procesos.

Palabras clave

Lens, dioxide de titanio, oxido de zinc, propiedades antilimpiantes, propiedades antibacterial, predicció de tecnologías

PDF

Citas

  1. H. Cheng et al., “The bifunctional regulation of interconnected Zn-incorporated ZrO2 nanoarrays in antibiosis and osteogenesis,” Biomater. Sci., vol. 3, no. 4, pp. 665–680, 2015, doi: 10.1039/c4bm00263f. DOI: https://doi.org/10.1039/C4BM00263F
  2. C. P. Betancur, V. Hernández Montes, and R. Buitrago Sierra, “Nanopartículas para materiales antibacterianos y aplicaciones del dióxido de titanio,” Rev. Cuba. Investig. Biomed., vol. 35, no. 4, pp. 366–381, 2016.
  3. C. Bouki, D. Venieri, and E. Diamadopoulos, “Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review,” Ecotoxicol. Environ. Saf., vol. 91, no. February, pp. 1–9, 2013, doi: 10.1016/j.ecoenv.2013.01.016. DOI: https://doi.org/10.1016/j.ecoenv.2013.01.016
  4. K. Szmajnta and M. M. Szindler, “Influence of uv radiation on tio2 nanoparticles antibacterial behaviour,” Arch. Mater. Sci. Eng., vol. 101, no. 1, pp. 25–31, 2020, doi: 10.5604/01.3001.0013.9503. DOI: https://doi.org/10.5604/01.3001.0013.9503
  5. Y. Xing, X. Li, X. Guo, W. Li, J. Chen, and Q. Liu, “Effects of Different TiO2 Nanoparticles Concentrations on the Physical and Antibacterial Activities of Chitosan-Based Coating Film.”
  6. Y. Xing et al., “Effect of TiO 2 nanoparticles on the antibacterial and physical properties of polyethylene-based film,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 219–224, 2012, doi: 10.1016/j.porgcoat.2011.11.005. DOI: https://doi.org/10.1016/j.porgcoat.2011.11.005
  7. L. Frunza et al., “Photocatalytic activity of wool fabrics deposited at low temperature with ZnO or TiO2 nanoparticles: Methylene blue degradation as a test reaction,” Catal. Today, vol. 306, pp. 251–259, 2018, doi: 10.1016/j.cattod.2017.02.044. DOI: https://doi.org/10.1016/j.cattod.2017.02.044
  8. A. A. Hebeish, M. M. Abdelhady, and A. M. Youssef, “TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile,” Carbohydr. Polym., vol. 91, no. 2, pp. 549–559, 2013, doi: 10.1016/j.carbpol.2012.08.068. DOI: https://doi.org/10.1016/j.carbpol.2012.08.068
  9. N. Sulong and A. Z. M. Rus, “Influence of TiO2 on selfclean bio coating,” Appl. Mech. Mater., vol. 315, pp. 399–403, 2013, doi: 10.4028/www.scientific.net/AMM.315.399. DOI: https://doi.org/10.4028/www.scientific.net/AMM.315.399
  10. T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake, “Photoelectrochemical sterilization of microbial cells by semiconductor powders,” FEMS Microbiol. Lett., vol. 29, no. 1–2, pp. 211–214, 1985, doi: 10.1111/j.1574-6968.1985.tb00864.x. DOI: https://doi.org/10.1111/j.1574-6968.1985.tb00864.x
  11. C. Xu, J. Zheng, and A. Wu, “Antibacterial applications of TiO2 nanoparticles,” TiO, pp. 105–132, 2020, doi: 10.1002/9783527825431.ch3. DOI: https://doi.org/10.1002/9783527825431.ch3
  12. Y. Wang, X. Xue, and H. Yang, “Modification of the antibacterial activity of Zn/TiO2 nano-materials through different anions doped,” Vacuum, vol. 101, pp. 193–199, 2014, doi: 10.1016/j.vacuum.2013.08.006. DOI: https://doi.org/10.1016/j.vacuum.2013.08.006
  13. S. Chang et al., “Mg2 TiO 4 spinel modified by nitrogen doping as a Visible-Light-Active photocatalyst for antibacterial activity,” Chem. Eng. J., vol. 410, no. January, p. 128410, 2021, doi: 10.1016/j.cej.2021.128410. DOI: https://doi.org/10.1016/j.cej.2021.128410
  14. R. S. Sonawane, B. B. Kale, and M. K. Dongare, “Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel dip coating,” Mater. Chem. Phys., vol. 85, no. 1, pp. 52–57, 2004, doi: 10.1016/j.matchemphys.2003.12.007. DOI: https://doi.org/10.1016/j.matchemphys.2003.12.007
  15. B. M. Huong, “APPLICATION OF SELF–CLEANING TREATMENT ON COTTON AND PES/CO FABRIC USING TiO2 AND SiO2 COATING SYNTHESIZED BY SOL–GEL METHOD,” Vietnam J. Sci. Technol., vol. 55, no. 1B, p. 77, 2018, doi: 10.15625/2525-2518/55/1b/12094. DOI: https://doi.org/10.15625/2525-2518/55/1B/12094
  16. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep., vol. 63, no. 12, pp. 515–582, 2008, doi: 10.1016/j.surfrep.2008.10.001. DOI: https://doi.org/10.1016/j.surfrep.2008.10.001
  17. N. T. Padmanabhan and H. John, “Titanium dioxide based self-cleaning smart surfaces: A short review,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104211, 2020, doi: 10.1016/j.jece.2020.104211. DOI: https://doi.org/10.1016/j.jece.2020.104211
  18. S. M. Gupta and M. Tripathi, “A review of TiO2 nanoparticles,” Chinese Sci. Bull., vol. 56, no. 16, pp. 1639–1657, 2011, doi: 10.1007/s11434-011-4476-1. DOI: https://doi.org/10.1007/s11434-011-4476-1
  19. M. Pelaez et al., “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B Environ., vol. 125, pp. 331–349, 2012, doi: 10.1016/j.apcatb.2012.05.036. DOI: https://doi.org/10.1016/j.apcatb.2012.05.036
  20. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein J. Nanotechnol., vol. 9, no. 1, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98. DOI: https://doi.org/10.3762/bjnano.9.98
  21. H. D. M. Villela, R. S. Peixoto, A. U. Soriano, and F. L. Carmo, “Microbial bioremediation of oil contaminated seawater: A survey of patent deposits and the characterization of the top genera applied,” Sci. Total Environ., vol. 666, pp. 743–758, 2019, doi: 10.1016/j.scitotenv.2019.02.153. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.153
  22. I. Hamidah, R. E. Pawinanto, B. Mulyanti, and J. Yunas, “A bibliometric analysis of micro electro mechanical system energy harvester research,” Heliyon, vol. 7, no. 3, p. e06406, 2021, doi: 10.1016/j.heliyon.2021.e06406. DOI: https://doi.org/10.1016/j.heliyon.2021.e06406
  23. F. Machuca-Martinez, R. C. Amado, and O. Gutierrez, “Coronaviruses: A patent dataset report for research and development (R&D) analysis,” Data Br., vol. 30, p. 105551, 2020, doi: 10.1016/j.dib.2020.105551. DOI: https://doi.org/10.1016/j.dib.2020.105551
  24. C. Ziegler, T. Sinigaglia, M. E. S. Martins, and A. M. Souza, “Technological advances to reduce apis mellifera mortality: A bibliometric analysis,” Sustain., vol. 13, no. 15, 2021, doi: 10.3390/su13158305. DOI: https://doi.org/10.3390/su13158305
  25. D. Kochetkov and M. Almaganbetov, “Using Patent Landscapes for Technology Benchmarking : A Case of 5G Networks,” pp. 20–28, 2021.
  26. H. Ernst, “The Use of Patent Data for Technological Forecasting: The Diffusion of CNC-Technology in the Machine Tool Industry,” Small Bus. Econ., vol. 9, no. 4, pp. 361–381, 1997, doi: 10.1023/A:1007921808138. DOI: https://doi.org/10.1023/A:1007921808138
  27. P. S. Meyer, J. W. Yung, and J. H. Ausubel, “A Primer on Logistic Growth and Substitution: The Mathematics of the Loglet Lab Software,” Technol. Forecast. Soc. Change, vol. 61, no. 3, pp. 247–271, 1999, doi: 10.1016/s0040-1625(99)00021-9. DOI: https://doi.org/10.1016/S0040-1625(99)00021-9
  28. J. Yoon, Y. Park, M. Kim, J. Lee, and D. Lee, “Tracing evolving trends in printed electronics using patent information,” J. Nanoparticle Res., vol. 16, no. 7, 2014, doi: 10.1007/s11051-014-2471-6. DOI: https://doi.org/10.1007/s11051-014-2471-6
  29. L. Gao et al., “Technology life cycle analysis method based on patent documents,” Technol. Forecast. Soc. Change, vol. 80, no. 3, pp. 398–407, 2013, doi: 10.1016/j.techfore.2012.10.003. DOI: https://doi.org/10.1016/j.techfore.2012.10.003
  30. M. Dehghanimadvar, R. Shirmohammadi, M. Sadeghzadeh, A. Aslani, and R. Ghasempour, “Hydrogen production technologies: Attractiveness and future perspective,” Int. J. Energy Res., vol. 44, no. 11, pp. 8233–8254, 2020, doi: 10.1002/er.5508. DOI: https://doi.org/10.1002/er.5508
  31. C. L. Æ. J. Wang, “Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis,” no. 152, pp. 21–36, 2010, doi: 10.1007/s11192-009-0055-5. DOI: https://doi.org/10.1007/s11192-009-0055-5
  32. X. Wu, “Application of Logistic Model in City Development Forecast,” Proc. 2017 2nd Int. Conf. Mater. Sci. Mach. Energy Eng. (MSMEE 2017), vol. 123, no. Msmee, pp. 706–710, 2017, doi: 10.2991/msmee-17.2017.137. DOI: https://doi.org/10.2991/msmee-17.2017.137
  33. G. Mao, H. Hu, X. Liu, J. Crittenden, and N. Huang, “A bibliometric analysis of industrial wastewater treatments from 1998 to 2019,” Environ. Pollut., vol. 275, p. 115785, 2021, doi: 10.1016/j.envpol.2020.115785. DOI: https://doi.org/10.1016/j.envpol.2020.115785
  34. M. E. Leitch, E. Casman, and G. V. Lowry, “Nanotechnology patenting trends through an environmental lens: Analysis of materials and applications,” J. Nanoparticle Res., vol. 14, no. 12, 2012, doi: 10.1007/s11051-012-1283-9. DOI: https://doi.org/10.1007/s11051-012-1283-9
  35. J. Yoon, B. Jeong, W. H. Lee, and J. Kim, “Tracing the Evolving Trends in Electronic Skin (e-Skin) Technology Using Growth Curve and Technology Position-Based Patent Bibliometrics,” IEEE Access, vol. 6, no. June, pp. 26530–26542, 2018, doi: 10.1109/ACCESS.2018.2834160. DOI: https://doi.org/10.1109/ACCESS.2018.2834160
  36. M. Baumann et al., “Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy,” Technol. Forecast. Soc. Change, vol. 165, no. January, 2021, doi: 10.1016/j.techfore.2020.120505. DOI: https://doi.org/10.1016/j.techfore.2020.120505
  37. B. Degroote and P. Held, “Analysis of the patent documentation coverage of the CPC in comparison with the IPC with a focus on Asian documentation,” World Pat. Inf., vol. 54, pp. S78–S84, 2018, doi: 10.1016/j.wpi.2017.10.001. DOI: https://doi.org/10.1016/j.wpi.2017.10.001
  38. R. James, J. Baker, A. Shih, and T. Hamouda, “Non-toxic antimicrobial composition and methods of use.”
  39. R. Dacey, R. Hyde, M. Ishikawa, and J. Kare, “US_8706211_B2 - Systems, devices and methods including catheters having self-cleaning surfaces.”
  40. “About Akeso Biomedical.” https://www.akesobiomedical.com/about.html (accessed Oct. 14, 2021).
  41. O. A. Jefferson et al., “Erratum: Mapping the global influence of published research on industry and innovation,” Nat. Biotechnol., vol. 36, no. 8, p. 772, 2018, doi: 10.1038/nbt0818-772a. DOI: https://doi.org/10.1038/nbt0818-772a
  42. Lens.org, “Support Center » Scholarly Search.” https://support.lens.org/help-resources/search/scholarly-search/ (accessed Oct. 04, 2021).
  43. LogletLab4, “Documentation Loglet Lab4.” https://logletlab.com/loglet/documentation/index (accessed Oct. 11, 2021).

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.