Mass function of fractal distribution of matter by excursion set theory
Abstract
With the foundations of Excursion Set Theory, we theoretically develop an expression for the mass function
in a fractal distribution of matter. The power spectrum for a fractal matter distribution is founded by
determining the variance for a distribution of galaxies characterized by mass-radius fractal dimension. The
mass function exhibits a good behavior in comparison with other mass functions reported in the literature,
with a dependence of two parameters, the β parameter of moving barrier and fractal dimension of matter
distribution.
Keywords
Función de masa, teoría excursion set, fractal
References
- J. Peacock, Cosmological physics. Cambridge University
- Press, 1999. [Online]. Available: http://books.google.com.
- co/books?id=t8O-yylU0j0C
- V. Martínez and E. Saar, Statistics of the galaxy distribu-
- tion. Chapman & Hall/CRC, 2002. [Online]. Available:
- http://books.google.com.co/books?id=f-l9bB-7AQMC
- M. Longair, Galaxy formation, ser. Astronomy and
- astrophysics library. Springer, 2008. [Online]. Available:
- http://books.google.com.co/books?id=e-wJHSBOuZAC
- R. Wald, General Relativity. University of Chicago
- Press, 2010. [Online]. Available: http://books.google.com.
- co/books?id=9S-hzg6-moYC
- P. V. Gruji´c, “The concept of a hierarchical cosmos,” Pu-
- blications de l’Observatoire Astronomique de Beograd,
- vol. 75, pp. 257–262, Oct. 2003.
- A. Gabrielli, Sylos, M. Joyce, and L. Pietronero, Statistical
- Physics for Cosmic Structures. Springer Verlag, 2005.
- E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett,
- B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon,
- L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut,
- S. S. Meyer, G. S. Tucker, J. L. Weiland, E. Wollack, and
- E. L. Wright, “Five-Year Wilkinson Microwave Aniso-
- tropy Probe Observations: Cosmological Interpretation,”
- ApJS, vol. 180, pp. 330–376, Feb. 2009.
- F. Caruso and V. Oguri, “The Cosmic Microwave Back-
- ground Spectrum and an Upper Limit for Fractal Space
- Dimensionality,” ApJ, vol. 694, pp. 151–153, Mar. 2009.
- N. Kobayashi, Y. Yamazaki, H. Kuninaka, M. Katori,
- M. Matsushita, S. Matsushita, and L.-Y. Chiang, “Fractal
- Structure of Isothermal Lines and Loops on the Cosmic
- Microwave Background,” Journal of the Physical Society
- of Japan, vol. 80, no. 7, p. 074003, Jul. 2011.
- G. Lemaître, “Expansion of the universe, A homogeneo-
- us universe of constant mass and increasing radius ac-
- counting for the radial velocity of extra-galactic nebulae,”
- MNRAS, vol. 91, pp. 483–490, Mar. 1931.
- H. P. Robertson, “Kinematics and World-Structure,” ApJ,
- vol. 82, p. 284, Nov. 1935.
- A. G. Walker, “On the formal comparison of Milne’s ki-
- nematical system with the systems of general relativity,”
- MNRAS, vol. 95, pp. 263–269, Jan. 1935.
- A. Friedmann, “On the Curvature of Space,” General Re-
- lativity and Gravitation, vol. 31, p. 1991, Dec. 1999.
- A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti,
- A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J.
- Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M.
- Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and
- J. Tonry, “Observational evidence from supernovae for
- an accelerating universe and a cosmological constant,”
- The Astronomical Journal, vol. 116, no. 3, p. 1009, 1998.
- [Online]. Available: http://stacks.iop.org/1538-3881/116/
- i=3/a=1009
- S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop,
- P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar,
- D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C.
- Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby,
- C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-
- Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filip-
- penko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M.
- Newberg, W. J. Couch, and T. S. C. Project, “Measure-
- ments of Ω and Λ from 42 High-Redshift Supernovae,”
- ApJ, vol. 517, pp. 565–586, Jun. 1999.
- M. Hamuy, S. C. Trager, P. A. Pinto, M. M. Phillips, R. A.
- Schommer, V. Ivanov, and N. B. Suntzeff, “A Search for
- Environmental Effects on Type IA Supernovae,” AJ, vol.
- , pp. 1479–1486, Sep. 2000.
- D. W. Hogg, D. J. Eisenstein, M. R. Blanton, N. A. Bah-
- call, J. Brinkmann, J. E. Gunn, and D. P. Schneider, “Cos-
- mic Homogeneity Demonstrated with Luminous Red Ga-
- laxies,” ApJ, vol. 624, pp. 54–58, May 2005.
- P. Sarkar, J. Yadav, B. Pandey, and S. Bharadwaj, “The
- scale of homogeneity of the galaxy distribution in SDSS
- DR6,” MNRAS, vol. 399, pp. L128–L131, Oct. 2009.
- S. Capozziello and S. Funkhouser, “Fractal Large-Scale
- Structure from a Stochastic Scaling Law Model,” Modern
- Physics Letters A, vol. 24, pp. 1743–1748, 2009.
- J. S. Bagla, J. Yadav, and T. R. Seshadri, “Fractal dimen-
- sions of a weakly clustered distribution and the scale of
- homogeneity,” MNRAS, vol. 390, pp. 829–838, Oct. 2008.
- M. Scrimgeour, T. Davis, C. Blake, J. B. James,
- G. Poole et al., “The WiggleZ Dark Energy Sur-
- vey: the transition to large-scale cosmic homogeneity,”
- Mon.Not.Roy.Astron.Soc., vol. 425, pp. 116–134, 2012.
- P. H. Coleman and L. Pietronero, “The fractal nature of
- the universe,” Physica A Statistical Mechanics and its
- Applications, vol. 185, pp. 45–55, Jun. 1992.
- S. Borgani, “The multifractal behaviour of hierarchical
- density distributions,” MNRAS, vol. 260, pp. 537–549,
- Feb. 1993.
- R. Durrer and F. Sylos Labini, “A fractal galaxy distri-
- bution in a homogeneous universe?” A&A, vol. 339, pp.
- L85–L88, Nov. 1998.
- J. Gaite, “The fractal distribution of haloes,” EPL
- (Europhysics Letters), vol. 71, no. 2, p. 332, 2005. [Online].
- Available: http://stacks.iop.org/0295-5075/71/i=2/a=332
- J. Gaite, “Halos and Voids in a Multifractal Model of
- Cosmic Structure,” ApJ, vol. 658, pp. 11–24, Mar. 2007.
- F. Sylos Labini, N. L. Vasilyev, L. Pietronero, and Y. V.
- Baryshev, “Absence of self-averaging and of homogeneity
- in the large-scale galaxy distribution,” EPL (Europhysics
- Letters), vol. 86, p. 49001, May 2009.
- A. O. Verevkin, Y. L. Bukhmastova, and Y. V. Baryshev,
- “The non-uniform distribution of galaxies from data of
- the SDSS DR7 survey,” Astronomy Reports, vol. 55, pp.
- –340, Apr. 2011.
- Y. Baryshev, “Field fractal cosmological model as an
- example of practical cosmology approach,” in Problems
- of Practical Cosmology, Volume 2, 2008, pp. 60–67.
- C. A. Chacón-Cardona and R. A. Casas-Miranda, “Millen-
- nium simulation dark matter haloes: multifractal and la-
- cunarity analysis and the transition to homogeneity,” MN-
- RAS, vol. 427, pp. 2613–2624, Dec. 2012.
- M. Joyce, F. Sylos Labini, A. Gabrielli, M. Montuori, and
- L. Pietronero, “Basic properties of galaxy clustering in the
- light of recent results from the Sloan Digital Sky Survey,”
- A&A, vol. 443, pp. 11–16, Nov. 2005.
- J. R. Mureika, “Fractal holography: a geometric re-
- interpretation of cosmological large scale structure,”
- JCAP, vol. 5, p. 21, May 2007.
- K. Enqvist, “Lemaitre Tolman Bondi model and acce-
- lerating expansion,” General Relativity and Gravitation,
- vol. 40, pp. 451–466, Feb. 2008.
- R. C. Tolman, “Effect of Inhomogeneity on Cosmological
- Models.” Proc Natl Acad Sci U S A, vol. 20, no. 3, pp. 169–
- , 1934. [Online]. Available: http://www.biomedsearch.
- com/nih/Effect-Inhomogeneity-Cosmological-Models/
- html
- H. Bondi, “Spherically symmetrical models in general
- relativity,” MNRAS, vol. 107, p. 410, 1947.
- W. B. Bonnor, “Evolution of inhomogeneous cosmologi-
- cal models,” MNRAS, vol. 167, pp. 55–62, Apr. 1974.
- F. Pompilio and M. Montuori, “An inhomogeneous fractal
- cosmological model,” Classical and Quantum Gravity,
- vol. 19, pp. 203–212, Jan. 2002.
- S. Viaggiu and M. Montuori, “How Large is the Contri-
- bution of Cosmic Web to Ωλ ? a Preliminary Study on a
- Novel Inhomogeneous Model,” International Journal of
- Modern Physics D, vol. 22, p. 50065, Aug. 2013.
- W. Rindler and D. Suson, “How to determine a Tolman-
- Bondi universe from ideal observable and theoretical rela-
- tions,” A&A, vol. 218, pp. 15–18, Jul. 1989.
- A. Mittal and D. Lohiya, “Fractal dust model of the univer-
- se based on Mandelbrot’s conditional cosmological princi-
- ple and general theory of relativity,” Fractals, vol. 11, pp.
- –153, 2003.
- N. P. Humphreys, D. R. Matravers, and R. Maartens,
- “Exact isotropic cosmologies with local fractal number
- counts,” Classical and Quantum Gravity, vol. 15, pp. 3041–
- , Oct. 1998.
- M.-N. Célérier, “Do we really see a cosmological constant
- in the supernovae data?” A&A, vol. 353, pp. 63–71, Jan.
- D. R. Matravers and N. P. Humphreys, “Matching Sphe-
- rical Dust Solutions to Construct Cosmological Models,”
- General Relativity and Gravitation, vol. 33, pp. 531–552,
- Mar. 2001.
- W. H. Press and P. Schechter, “Formation of Galaxies
- and Clusters of Galaxies by Self-Similar Gravitational
- Condensation,” ApJ, vol. 187, pp. 425–438, Feb. 1974.
- J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser, “Excur-
- sion set mass functions for hierarchical Gaussian fluctua-
- tions,” ApJ, vol. 379, pp. 440–460, Oct. 1991.
- C. Lacey and S. Cole, “Merger rates in hierarchical models
- of galaxy formation,” MNRAS, vol. 262, pp. 627–649, Jun.
- R. K. Sheth, “An excursion set model for the distribution
- of dark matter and dark matter haloes,” MNRAS, vol. 300,
- pp. 1057–1070, Nov. 1998.
- S. Chandrasekhar, “Stochastic problems in physics and
- astronomy,” Rev. Mod. Phys., vol. 15, pp. 1–89, Jan
- [Online]. Available: http://link.aps.org/doi/10.1103/
- RevModPhys.15.1
- R. K. Sheth and G. Tormen, “An excursion set model of
- hierarchical clustering: ellipsoidal collapse and the mo-
- ving barrier,” MNRAS, vol. 329, pp. 61–75, Jan. 2002.
- A. R. Zentner, “The Excursion Set Theory of Halo Mass
- Functions, Halo Clustering, and Halo Growth,” Internatio-
- nal Journal of Modern Physics D, vol. 16, pp. 763–815,
- J. Pan, Y. Wang, X. Chen, and L. F. A. Teodoro, “Effects
- of correlation between merging steps on the global halo
- formation,” MNRAS, vol. 389, pp. 461–468, Sep. 2008.
- J. Pan, “Fractional Brownian motion and the halo mass
- function,” MNRAS, vol. 374, pp. L6–L9, Jan. 2007.
- F. Sylos Labini and L. Amendola, “The Power Spectrum
- in a Strongly Inhomogenous Universe,” ApJ, vol. 468,
- p. L1, Sep. 1996.
- B. B. Mandelbrot, “Galaxy distributions and fractals.” As-
- trophysical Letters and Communications, vol. 36, pp. 1–5,
- Dec. 1997.
- V. V. Uchaikin, “If the Universe Were a Levy-Mandelbrot
- Fractal,” Gravitation and Cosmology, vol. 10, pp. 5–24,
- Jun. 2004.
- B. Mandelbrot, The fractal geometry of nature. W.H.
- Freeman, 1983. [Online]. Available: http://books.google.
- es/books?id=0R2LkE3N7-oC
- F. Sylos Labini, M. Montuori, and L. Pietronero, “Scale-
- invariance of galaxy clustering,” Phys. Rep., vol. 293, pp.
- –226, 1998.
- A. Jenkins, C. S. Frenk, S. D. M. White, J. M. Colberg,
- S. Cole, A. E. Evrard, H. M. P. Couchman, and N. Yoshida,
- “The mass function of dark matter haloes,” MNRAS, vol.
- , pp. 372–384, Feb. 2001.
- M. S. Warren, K. Abazajian, D. E. Holz, and L. Teodoro,
- “Precision Determination of the Mass Function of Dark
- Matter Halos,” ApJ, vol. 646, pp. 881–885, Aug. 2006.
- Z. L. Wen, J. L. Han, and F. S. Liu, “Mass function of rich
- galaxy clusters and its constraint on σ 8,” MNRAS, vol.
- , pp. 533–543, Sep. 2010.
Downloads
Download data is not yet available.