Ecophysiological aspects of guava (Psidium guajava L.). A review

Main Article Content

Autores

Gerhard Fischer https://orcid.org/0000-0001-8101-0507
Luz Marina Melgarejo https://orcid.org/0000-0003-3148-1911

Abstract

Guava, because of its ability to grow in tropical and subtropical climates, has been introduced to some 60 low-latitude countries. It is adapted to a temperature range between 15 and 30°C. Outside this range, the effect of lower or higher temperatures reduces fruit set, while night temperatures of 5 to 7°C stop growth. Additionally, low temperatures hinder production, causing flowers to fall or increasing the fruit development cycle, up to 220 days. When estimating the cardinal temperatures of development, the minimum threshold temperature was 10.9°C, the optimum temperature was 17.3°C, and the maximum threshold temperature was 51.2°C. The guava tree adapts well to altitudes between 0 and 2,000 m a.s.l. in Colombia; however, there is a high genotype×environment interaction for production and quality characteristics in fruits with respect to the orchard elevation. Radiation >2,000 µmol photons m-2 s-1 decreased the fruit ascorbic acid content. An important ecophysiological factor in guava is water, and crops require between 1,000 to 2,000 mm year-1. It withstands waterlogging for several days, but excess precipitation and atmospheric humidity decrease fruit quality considerably. However, this tree is classified as moderately drought-tolerant to stress from water deficits, affecting flowering and fruit set. It is also moderately tolerant to salinity, depending on the variety, supporting electrical conductivities up to 1.5-1.8 dS m-1. Generally, guava can be cultivated in a wide range of tropical and subtropical areas, where it is preferred because of its high nutritional and medicinal contents and its aptitude for transport and handling.

Keywords:

Article Details

Licence

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.

References

Agronet. 2020. Guayaba. In: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; consulted: November, 2020.

Aguilera-Arango, G.A., E. Rodríguez-Henao, H.N. Chaparro-Zambrano, and J.O. Orduz-Rodríguez. 2020. Estado actual de la investigación para el cultivo de guayaba en Colombia. Agron. Mesoamer. 31(3), 845-860. Doi: 10.15517/am.v31i3.40207

Arteaga, L. and J. Burbano. 2018. Efectos del cambio climático: Una mirada al Campo. Rev. Cienc. Agríc. 35(2), 79-91. Doi: 10.22267/rcia.183502.93

Bandera, E. and L. Pérez. 2015. Mejoramiento genético de guayabo (Psidium guajava L.). Cult. Trop. 36(Sp. Tiss.), 96-110.

Bezerra, I.L., R.G. Nobre, H.R. Gheyi, G.S. Lima, and J.L. Barbosa. 2018a. Physiological indices and growth of ‘Paluma’ guava under saline water irrigation and nitrogen fertigation. Rev. Caatinga 31(4), 808-816. Doi: 10.1590/1983-21252018v31n402rc

Bezerra, I.L., R.G. Nobre, H.R. Gheyi, L.P. Souza, F.W.A. Pinheiro, and G.S. Lima. 2018b. Morphophysiology of guava under saline water irrigation and nitrogen fertilization. Rev. Bras. Eng. Agríc. Ambient. 22(1), 32-37. Doi: 10.1590/1807-1929/agriambi.v22n1p32-37

Blancke, R. 2016. Tropical fruits and other edible plants of the world. Cornell University Press, Ithaca and London. Doi: 10.7591/9781501704284

Bonifácio, B.F., R.G. Nobre, A.S. Sousa, E.M. Gomes, E.M. Silva, and L.P. Sousa. 2018. Efeitos da adubação potássica e irrigação com águas salinas no crescimento de porta-enxerto de goiabeira. Rev. Ciênc. Agr. 41(4), 971-980. Doi: 10.19084/RCA18119

Campos, D., R. Chirinos, L. Gálvez, and R. Pedreschi. 2018. Bioactive potential of Andean fruits, seeds, and tubers. pp. 287-343. In: Toldra, F. (ed.). Advances in food and nutrition research. Vol. 84. Elsevier, Cambridge, MA. Doi: 10.1016/bs.afnr.2017.12.005

Cavalcante, L.F., Í.H.L Cavalcante, K.S.N. Pereira, F.A. Oliveira, S.C Gondim, and F.A.R. Araújo. 2005. Germination and initial growth of guava plants irrigated with saline wáter. Rev. Bras. Eng. Agríc. Ambient. 9(4), 515-519. Doi: 10.1590/S1415-43662005000400012

Cavalcante, L.F., M.S. Vieira, A.F. Santos, W.M. Oliveira, and J.A.M. Nascimento. 2010. Água salina e esterco bovino líquido na formação de mudas de goiabeira cultivar Paluma. Rev. Bras. Frutic. 32(1), 251-261. Doi: 10.1590/S0100-29452010005000037

Crane, J.H., C.F. Balerdi, and B. Schaffer. 2019. Managing your tropical fruit grove under changing water table levels. Doc. HS957. Horticultural Sciences Department, UF/IFAS Extension, Gainesville, FL.

DaMatta, F.M., A. Grandis, B.C. Arenque, and M.S. Buckeridge. 2010. Impacts of climate changes on crop physiology and food quality. Food Res. Int. 43, 1814-1823. Doi: 10.1016/j.foodres.2009.11.001

Devenish, C. and C. Gianella (eds.). 2012. 20 years of sustainable mountain development in the Andes ‒from Rio 1992 to 2012 and beyond‒. Consorcio para el Desarrollo Sostenible de la Ecorregión Andina, CONDESAN, Lima.

Ebert, G., J. Eberle, H. Ali-Dinar, and P. Lüdders. 2002. Ameliorating effects of Ca(NO3)2 on growth, mineral uptake and photosynthesis of NaCl-stressed guava seedlings (Psidium guajava L.). Sci. Hortic. 93, 125-135. Doi: 10.1016/S0304-4238(01)00325-9

Farias, D.P., I.A. Neri-Numa, F.F. Araújo, and G.M. Pastore. 2020. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem. 306, 125630. Doi: 10.1016/j.foodchem.2019.125630

Ferreira, M.C., F.B. Martins, G.W.L. Florêncio, and L.A.A.P. Pasin. 2019. Cardinal temperatures and modeling of vegetative development in guava. Rev. Bras. Eng. Agríc. Ambient. 23(11), 819-825. Doi: 10.1590/1807-1929/agriambi.v23n11p819-825

Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: 10.17584/rcch.2020v14i1.10893

Fischer, G., L.M. Melgarejo, and D. Miranda. 2012. Guayaba (Psidium guajava L.). pp. 526-549. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Fischer, G. and J.O. Orduz-Rodríguez. 2012. Ecofisiología en los frutales. pp. 54-72. In: Fischer G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Fischer, G. and A. Parra-Coronado. 2020. Influence of environmental factors on the feijoa (Acca sellowiana [Berg] Burret) crop. A review. Agron. Colomb. 38(3). Doi: 10.15446/agroncolomb.v38n3.88982

Fischer, G., F. Ramírez, and F. Casierra-Posada. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agron. Colomb. 34(2), 190-199. Doi: 10.15446/agron.colomb.v34n2.56799

Genard, M., C. Gibert, C. Bruchou, and F. Lescourret. 2009. An intelligent virtual fruit model focusing on quality attributes. J. Hort. Sci. Biotech. ISAFRUIT Suppl. 84(6), 157-163. Doi: 10.1080/14620316.2009.11512614

Gómez, G. and N. Rebolledo-Podleski. 2006. Módulo del cultivo de la Guayaba. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Mosquera, Colombia.

Haokip, S.W., K. Shankar, and J. Lalrinngheta 2020. Climate change and its impact on fruit crops. J. Pharmacog. Phytochem. 9(1), 435-438.

Hoyos, J. 1989. Frutales en Venezuela. Sociedad de Ciencias Naturales La Salle, Caracas.

Insuasty, O., R. Monroy, A.D. Fonseca, and J. Bautista. 2007. Manejo integrado del picudo de la guayaba (Conotrachelus psidii Marshall) en Santander. Produmedios, Bogota.

Jalil, S.U. and M.I. Ansari. 2020. Stress implications and crop productivity. pp. 73-86. In: Hasanuzzaman, M. (ed.). Plant ecophysiology and adaption under climate change: Mechanisms and perspectives I. Springer Nature, Singapore. Doi: 10.1007/978-981-15-2156-0_3

Kongsri, S., P. Nartvaranant, and U. Boonprakob. 2020. A comparison of flooding tolerance of guava tree propagated from shoot layering and seedling. Acta Hortic. 1298, 625-632. Doi: 10.17660/ActaHortic.2020.1298.86

Lambers, H., F.S. Chapin III, F. Stuart, and T.L. Pons. 2008. Plant physiological ecology. Springer, New York. Doi: 10.1007/978-0-387-78341-3

Ligarreto, G. 2012. Recursos genéticos de especies frutícolas en Colombia. pp. 35-53. In: Fischer, G. (ed.). Manual para el cultivo de frutales en trópico. Produmedios, Bogota.

López-Santos, J., T. Castañeda-Martínez, and J.G. González-Díaz. 2017. Nueva ruralidad y dinámicas de proximidad en el desarrollo territorial de los sistemas agroalimentarios localizados. Polis 47, 211-233. Doi: 10.4067/S0718-65682017000200211

Marengo, J.A., J.D. Pabón, A. Díaz, G. Rosas, G. Ávalos, E. Montealegre, M. Villacis, S. Solman, and M. Rojas. 2011. Climate change: evidence and future scenarios for the Andean region. pp. 110-127. In: Herzog, S., R. Martinez, P.M. Jorgensen, and H. Tiessen (eds.). Climate change and biodiversity in the tropical Andes. IAI; SCOPE; UNESCO, Paris.

Mata, I. and A. Rodríguez. 2000. Cultivo y producción de guayaba. Trillas, Mexico, DF.

Mendoza, M., C.A. Peres, and L.P.C. Morellato. 2017. Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. Glob. Planet. Change 148, 227-241. Doi: 10.1016/j.gloplacha.2016.12.001

Menzel, C.M. 1985. Guava: An exotic fruit with potential in Queensland. Queensl. Agric. J. 111(2), 93-98.

Mercado-Silva, E., P. Benito-Bautista, and M.A. Garcia-Velasco. 1998. Fruit development, harvest index and ripening changes of guavas produced in Central México. Postharvest Biol. Technol. 13, 143-150. Doi: 10.1016/S0925-5214(98)00003-9

Methela, N.J., O. Faruk, M.S. Islam, and M.M. Hossain. 2019. Morphological characterization of guava germplasm (Psidium sp.). J. Biosci. Agric. Res. 20(01), 1671-1680. Doi: 10.18801/jbar.200119.203

Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15-19. Doi: 10.1016/j.tplants.2005.11.002

Mishra, M., S.U. Jalil, N. Sharma, and U. Hudedamani. 2014. An Agrobacterium mediated transformation system of guava (Psidium guajava L.) with endochitinase gene. Crop Breed. Appl. Biotechnol. 14, 232-237. Doi: 10.1590/1984-70332014v14n4a36

Moreno-Miranda, C., R. Moreno-Miranda, A.A. Pilamala-Rosales, and J.I. Molina-Sánchez. 2019. El sector hortofrutícola de Ecuador: Principales características socio-productivas de la red agroalimentaria de la uvilla (Physalis peruviana). Cienc. Agric. 16(1), 31-55. Doi: 10.19053/01228420.v16.n1.2019.8809

Moreno, E., B.L. Ortiz, and L.P. Restrepo. 2014. Contenido total de fenoles y actividad antioxidante de pulpa de seis frutas tropicales. Rev. Colomb. Quím. 43(3), 41-48. Doi: 10.15446/rev.colomb.quim.v43n3.53615

Morton, J.F. 1987. Fruits of warm climates. Julia F. Morton, Miami, FL.

Musyarofah, N., S. Susanto, S.A. Aziz, K. Suket, and Dadang. 2020. The diversity of ‘kristal’ guava (Psidium guajava) fruit quality in response to different altitudes and cultural practices. Biodiversitas 21, 3310-3316. Doi: 10.13057/biodiv/d210755

Nakasone, H.Y. and R.E. Paull. 1998. Tropical fruits. CAB International, Wallingford, UK.

Natale, W., R.M. Prado, J.A. Quaggio, and D. Mattos Jr. 2008. Guava. In: Crisóstomo, L., A. Nuamov, and A.E. Johnston (eds.). Fertilizing for high yield and quality tropical fruits of Brazil. International Potash Institute Bulletin, Horgen, Switzerland.

Parra-Coronado, A. 2014. Maduración y comportamiento poscosecha de la guayaba (Psidium guajava L.). Una revisión. Rev. Colomb. Cienc. Hortic. 8(2), 314-327. Doi: 10.17584/rcch.2014v8i2.3223

Paull, R.E. and O. Duarte. 2012. Tropical fruits. Vol. 2. 2nd ed. CABI International, Wallingford, UK. Doi: 10.1079/9781845937898.0000

Pérez, L.V. and L.M. Melgarejo. 2015. Photosynthetic performance and leaf water potential of gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the Colombian Andes. Acta Biol. Colomb. 20(1), 183-194. Doi: 10.15446/abc.v20n1.42196

Pérez-Gutiérrez, R.M.P., S. Mitchell, and R.V. Solis. 2008. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharm. 117(1), 1-27. Doi: 10.1016/j.jep.2008.01.025

Prado, R.M., J.P.S. Junior, G.P.S. Júnior, and I.H.L Cavalcante. 2017. Guava: The relationship between the productive aspects, the quality of the fruits and its health benefits. pp. 1-16. In: Murphy, A. (ed.). Guava: Cultivation, antioxidant properties & health benefits. Nova Science Publishers, New York, NY.

Rai, M.K. and U. Jaiswal. 2020. Psidium guajava Guava. pp. 330-342. In: Litz, R.E., F. Pliego-Alfaro, and J.I. Homaza. (eds.). Biotechnology of fruit and nut crops. 2nd ed. CAB International, Wallingford, UK. Doi: 10.1079/9781780648279.0330

Ramadan, M.F. 2011. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 44, 1830-1836. Doi: 10.1016/j.foodres.2010.12.042

Ramírez, F. and J. Kallarackal. 2018. Climate change, tree pollination and conservation in the tropics: a research agenda beyond IPBES. Wiley Interdiscip. Rev. Clim. Change 9(1), e502. Doi: 10.1002/wcc.502

Ramírez, M., A. Urdaneta, and E. Pérez. 2017. Germinación del guayabo tipo ‘Criolla Roja’ bajo condiciones de salinidad por cloruro de sodio. Bioagro 29(1), 65-72.

Raza, A., F. Ashraf, X. Zou, X. Zjang, and H. Tosif. 2020. Plant adaptation and tolerance to environmental stresses: Mechanisms and perspectives. pp. 117-146. In: Hasanuzzaman, M. (ed.). Ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer Nature Singapore. Doi: 10.1007/978-981-15-2156-0_5

Restrepo-Díaz, H. and A.D. Sánchez-Reinoso. 2020. Ecophysiology of fruit crops: A glance at its impact on fruit crop productivity. pp. 59-66. In: Srivastava, A.K. and C. Hu (eds.). Fruit crops: Diagnosis and management of nutrient constraints. Elsevier. Doi: 10.1016/B978-0-12-818732-6.00005-8

Sá, F.W.S., R.G. Nobre, L.A. Silva, R.C.L. Moreira, E.P Paiva, and F.A. Oliveira. 2016. Tolerance of guava rootstocks under salt stress. Rev. Bras. Eng. Agríc. Ambient. 20(12), 1072-1077. Doi: 10.1590/1807-1929/agriambi.v20n12p1072-1077

Salazar, D.M., P. Melgarejo, R. Martínez, J.J. Martínez, F. Hernández, and M. Burguera. 2006. Phenological stages of the guava tree (Psidium guajava L.). Sci. Hortic. 108, 157-161. Doi: 10.1016/j.scienta.2006.01.022

Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Parámetros de fluorescencia de la clorofila y otros parámetros fisiológicos como indicadores del estrés por anegamiento y sombrío en plántulas de lulo (Solanum quitoense var. septentrionale). Rev. Colomb. Cienc. Hortic. 13(3), 325-335. Doi: 10.17584/rcch.2019v13i3.10017

Sentelhas, P.C., C.T.P Junior, J.M.M. Sogristi, R. Kavati, and M.T. Parodi. 1996. Temperatura letal de diferentes plantas frutíferas tropicais. Bragantia 55(2), 231-235. Doi: 10.1590/S0006-87051996000200004

Sharma, R.R., A. Nagaraja, A.K. Goswami, M. Thakre, and E. Varghese. 2020. Influence of on-the-tree fruit bagging on biotic stresses and postharvest quality of rainy-season crop of ‘Allahabad Safeda’ guava (Psidium guajava L.). Crop Prot. 135, 105216. Doi: 10.1016/j.cropro.2020.105216

Shukla, P.R., J. Skea, R. Slade, R. Van Diemen, E. Haughey, J. Malley, M. Pathak, and J. Portugal Pereira (eds.). 2019. Technical summary, 2019. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/03_Technical-Summary-TS.pdf; consulted: August, 2020.

Singh, G. 2007. Recent development in production of guava. Acta Hortic. 735, 161-176. Doi: 10.17660/ActaHortic.2007.735.21

Singh, S.P. 2011. Guava (Psidium guajava L.). pp. 213-246. In: Yahia, E.M. (ed.). Postharvest biology and technology of tropical and subtropical fruits. Vol 3. Cocona to mango. Woodhead Publishing, Oxford, UK. Doi: 10.1533/9780857092885.213

Singh, G., H. Sahare, and M. Deep. 2019. Recent trends in guava propagation - A review. Biosci. Biotechnol. Res. Asia 16(1), 143-154. Doi: 10.13005/bbra/2732

Solarte, M.E., L.M. Melgarejo, O. Martínez, M.S. Hernández, and J.P. Fernández-Trujillo. 2014. Fruit quality during ripening of Colombian guava (Psidium guajava L.) grown at different altitudes. J. Food Agric. Environ. 12(2), 669-675.

Solarte, M.E., H.M. Romero, and L.M. Melgarejo. 2010. Caracterización ecofisiológica de la guayaba de la Hoya del Río Suárez. pp. 25-56. In: Melgarejo, L.M. and A.L. Morales (eds.). Desarrollo de productos funcionales promisorios a partir de la guayaba (Psidium guajava L.) para el fortalecimiento de la cadena productiva. Universidad Nacional de Colombia, Bogota.

Souza, A.G., C.S. Marinho, M.P.S. Silva, W.S.G. Carvalho, G.S. Campos, and B.A. Pestana. 2020. Guava seedlings with rootstocks or interstocks and their reaction to salinity. Bragantia 79(1), 74-82. Doi: 10.1590/1678-4499.20190210

Souza, P.M.B. and F.B. Martins. 2014. Estimativa da temperatura basal inferior para as cultivares de oliveira Grappolo e Maria da Fé. Rev. Bras. Meteor. 29, 307-313. Doi: 10.1590/S0102-77862014000200013

Souza, L.P., R.G. Nobre, E.M. Silva, H.R. Ghey, and L.A.A. Soares. 2017. Produção de porta-enxerto de goiabeira cultivado com águas de diferentes salinidades e doses de nitrogênio. Rev. Ciênc. Agron. 48(4), 596-604. Doi: 10.5935/1806-6690.20170069

Souza, M.E., A.C. Silva, A.P. Souza, A.A. Tanaka, and S. Leonel. 2010. Influência das precipitações pluviométricas em atributos físico-químicos de frutos da goiabeira ‘Paluma’ em diferentes estádios de maturação. Rev. Bras. Frutic. 32(2), 637-646. Doi: 10.1590/S0100-29452010005000060

Taiwo, A.F., O. Daramola, M. Sow, and V.K. Semwal. 2020. Ecophysiology and responses of plants under drought. In: Hasanuzzaman, M. (ed.). Plant ecophysiology and adaptation under climate change: Mechanisms and perspectives I. Springer Nature Singapore. Doi: 10.1007/978-981-15-2156-0_8

Thaipong, K. and U. Boonprakob. 2005. Genetic and environmental variance components in guava fruit qualities Sci. Hortic. 104, 37-47. Doi: 10.1016/j.scienta.2004.07.008

Tito, R., H.L. Vasconcelos, and K.J. Feeley. 2018. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Glob. Change Biol. 24(2), 592-6011. Doi: 10.1111/gcb.13959

Viera, W., A. Sotomayor, and P. Viteri. 2019. Breeding of three Andean fruit crops in Ecuador. Chron. Hortic. 59(4), 20-29.

Yadava, U.L. 1996. Guava: An exotic tree fruit with potential in the Southeastern United States. HortScience 31(5), 789-794. Doi: 10.21273/HORTSCI.31.5.789

Downloads

Download data is not yet available.