Effect of different water levels on the growth and development of bulb onion (<i>Allium cepa</i> L.)

Efecto de diferentes láminas de riego en el crecimiento y desarrollo de cebolla de bulbo (Allium cepa L.)

Main Article Content

Javier Giovanni Alvarez-Herrera
Oscar Humberto Alvarado-Sanabria
Freddy Alonso Suesca-Ochoa

Abstract

Because of the shallow root system of the onion plant, it requires irrigation at the proper time and intensity in order to promote the absorption of water and nutrients to obtain a high yield. We evaluated the irrigation rate effect on onion growth and development in a sandy loam soil with a sprinkler irrigation system. The experiment design was completely randomized with four treatments (evaporation coefficients of 0.8, 1.0, 1.2 and 1.4 of (Ev)), each with 16 repetitions, for 64 experiment units; each experiment unit was a 1 m2 plot. The 1.2 coefficient (43 L per plant per cycle) showed the highest total dry mass and dry mass of the bulb with significant differences from the 0.8 coefficient, but no differences with the application of the 1 and 1.4 Ev. Furthermore, the 1.2 Ev treatment showed the highest root dry mass. There was no significant difference between the treatments during the first 70 days after transplant, but after this time, there was a statistically difference and the 1.2 Ev showed the highest dry matter accumulation.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Agronet. 2016. Principales departamentos productores de cebolla año 2013. En: http://agronet.gov.co/agronetweb1/Estad%C3%ADsticas.aspx; consulta: agosto de 2017.

Bekele, S. y K. Tilahun. 2007. Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia. Agric. Water Manage. 89(1-2), 148-152. Doi: https://doi.org/10.1016/j.agwat.2007.01.002

Brewster, J.L. 2008. Onions and other vegetable Alliums. CABI International, Cambridge, MA, USA. Doi: https://doi.org/10.1079/9781845933999.0000

Enciso, J., B. Wiedenfeld, J. Jifon y S. Nelson. 2009. Onion yield and quality response to two irrigation scheduling strategies. Sci. Hortic. 120(3), 301-305. Doi: https://doi.org/10.1016/j.scienta.2008.11.004

FAO. 2006. Evapotranspiración del cultivo: guías para la determinación de los requerimientos de agua de los cultivos. FAO, Roma, Italia.

FAO. 2016. Yield and area of dry onions in 2010. En: Statical database, http://fenix.fao.org/faostat/beta/en/?#data/QC; consulta: agosto de 2017.

Irfan, M., S. Hayat, Q. Hayat, S. Afroz y A. Ahmad. 2010. Physiological and biochemical changes in plants under waterlogging. Protoplasma 241(1), 3-17. Doi: https://doi.org/10.1007/s00709-009-0098-8

Kumar, S., M. Imtiyaz y A. Kumar. 2007a. Effect of differential soil moisture and nutrient regimes on postharvest attributes of onion (Allium cepa L.). Sci. Hortic. 112(2), 121-129. Doi: https://doi.org/10.1016/j.scienta.2006.12.024

Kumar, S., M. Imtiyaz, A. Kumar y R. Singh. 2007b. Response of onion (Allium cepa L.) to different levels of irrigation water. Agric. Water Manag. 89(1-2), 161-166. Doi: https://doi.org/10.1016/j.agwat.2007.01.003

Medrano, H., J. Galmés y J. Flexas. 2008. Fijación del dióxido de carbono y biosíntesis de fotoasimilados. pp. 211-126. En: Azcón-Bieto, J. y M. Talón (eds.). Fundamentos de fisiología vegetal. McGraw-Hill, Barcelona, España.

Metwally, A.K. 2011. Effect of water supply on vegetative growth and yield characteristics in onion (Allium cepa L.). Aust. J. Basic Appl. Sci. 5(12), 3016-3023.

Mishra, R., R.K. Jaiswal y D. Kumar. 2014. Management of major diseases and insect pests of onion and garlic: a comprehensive review. J. Plant Breed Crop Sci. 6(11), 160-170. Doi: https://doi.org/10.5897/JPBCS2014.0467

Rattin, J.E., S. Assuero, G.O. Sasso y J.A. Tognetti. 2011. Accelerated storage losses in onion subjected to water deficit during bulb filling. Sci. Hortic. 130(1), 25-31. Doi: https://doi.org/10.1016/j.scienta.2011.06.026

Rodríguez-Galdón, B., C. Tascón-Rodríguez, E.M. Rodríguez-Rodríguez y C. Díaz-Romero. 2009. Fructans and major compounds in onion cultivars (Allium cepa). J. Food Compos. Anal. 22(1), 25-32. Doi: https://doi.org/10.1016/j.jfca.2008.07.007

Sánchez-Díaz, M. y J. Aguirreolea. 2008. Transpiración y control estomático. pp. 41-56. En: Azcón-Bieto, J. y M. Talón (eds.). Fundamentos de fisiología vegetal. McGraw-Hill, Barcelona, España.

Sauter, M. 2013. Root responses to flooding. Curr. Opin. Plant Biol. 16(3), 282-286. Doi: https://doi.org/10.1016/j.pbi.2013.03.013

Shao, H.B., L. Chu, C.A. Jaleel y C.X. Zhao. 2008. Water-deficit stress-induced anatomical changes in higher plants. C. R. Biol. 331(3), 215-225. Doi: https://doi.org/10.1016/j.crvi.2008.01.002

Steen, S. y N. Benkeblia. 2014. Variation of reducing and total sugars during growth of onion tissues. Acta Hortic. 1047, 51-55. Doi: https://doi.org/10.17660/ActaHortic.2014.1047.3

Steffens, B. 2014. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front. Plant Sci. 5, 685. Doi: https://doi.org/10.3389/fpls.2014.00685

Taiz, L., E. Zeiger., I.M. Møller y A. Murphy. 2015. Plant physiology and development. 6th ed. Sinauer Associates, Sunderland, MA, USA.

Thomas, H. 2013. Senescence, ageing and death of the whole plant. New Phytol. 197(3), 696-711. Doi: https://doi.org/10.1111/nph.12047

Voesenek, L.A.C.J. y R. Sasidharan. 2013. Ethylene and oxygen signalling drive plant survival during flooding. Plant Biol. 15(3), 426-435. Doi: https://doi.org/10.1111/plb.12014

Zheng, J., G. Huang y J. Wang. 2012. Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China. Irrig. Sci. 31(5), 995-1008. Doi: https://doi.org/10.1007/s00271-012-0378-5

Citado por: