Skip to main navigation menu Skip to main content Skip to site footer

Agronomic evaluation of Cannabis sativa (L.) cultivars in northern Colombia

Cannabis plant. Photo: Herrera-Contreras, A.C.

Abstract

Cannabis sativa (L.) is used to obtain fiber, seeds and phytocannabinoids for medicinal and recreational purposes. The commercial production of this species is limited by the lack of knowledge of the agronomic behavior and the content of phytocannabinoids, hence the need for evaluation of genetic diversity, for the selection of cultivars, in accordance with the legal provisions in force in Colombia. The objective of this work was to evaluate the agronomic characteristics and phytocannabinoid content of 10 cultivars, in Pueblo Bello-Cesar, northern Colombia. The study was conducted in 2022, under greenhouse conditions with polycarbonate cover and anti-aphid mesh. We evaluated 10 clones of territorial seed source, using cuttings of 13 cm in length, of female plants. The rooted cuttings were planted in 6 L bags, in a mesh house until harvest. The randomized complete block design was used, with 10 treatments and three repetitions. Each experimental unit consisted of 20 plants, with a density of 16 plants/m2, both in the vegetative and reproductive phases, with distances between plants and rows of 14 cm. Genetic variability was estimated in both vegetative and reproductive characteristics and phytocannabinoid content. Three groups of genotypes were identified, according to the combinations of alleles coding for the phytocannabinoid content: high THC (tetrahydrocannabinol), similar THC-CBD ratio and high CBD (cannabidiol), which determines their potential use, mainly in medicine.

Keywords

Genetic variability, Seed source, Medical cannabis, Agronomic characteristics, Biomass production, Phytocannabinoids

PDF

References

  1. Ascrizzi, R., L. Ceccarini, S. Tavarini, G. Flamini, and L. Angelini. 2019. Valorisation of hemp inflorescence after seed harvest: Cultivation site and harvest time influence agronomic characteristics and essential oil yield and composition. Ind. Crops Prod. 139, 111541. Doi: https://doi.org/10.1016/j.indcrop.2019.111541
  2. Baldini, M., C. Ferfuia, F. Zuliani, and F. Danuso. 2020. Suitability assessment of different hemp (Cannabis sativa L.) varieties to the cultivation environment. Ind. Crops Prod. 143, 111860. Doi: https://doi.org/10.1016/j.indcrop.2019.111860
  3. Bernstein, N., J. Garelick, and S. Koch. 2019. Interplay between chemistry and morphology in medical cannabis (Cannabis sativa L.). Ind. Crops Prod. 129, 185-194. Doi: https://doi.org/10.1016/j.indcrop.2018.11.039
  4. Bevan, L., M. Jones, and Y. Zheng. 2021. Optimisation of nitrogen, phosphorus, and potassium for soilless production of Cannabis sativa in the flowering stage using response surface analysis. Front. Plant Sci. 12, 2587. Doi: https://doi.org/10.3389/fpls.2021.764103
  5. Busta, L., I. Dweikat, S.J. Sato, H. Qu, Y. Xue, B. Zhou, L. Gan, B. Yu, T.E. Clemente, E.B. Cahoon, and C. Zhang. 2022. Chemical and genetic variation in feral Cannabis sativa populations across the Nebraska climate gradient. Phytochemistry 200, 113206. Doi: https://doi.org/10.1016/j.phytochem.2022.113206
  6. Campbell, L.G., S.G.U. Naraine, and J. Dusfresne. 2019. Phenotypic plasticity influences the success of clonal propagation in industrial pharmaceutical Cannabis sativa. PLoS ONE 14(3), e0213434. Doi: https://doi.org/10.1371/journal.pone.0213434
  7. Cascini, F., A. Farcomeni, D. Migliorini, L. Baldassarri, I. Boschi, S. Martello, S. Amaducci, L. Lucini, and J. Bernardi. 2019. Highly predictive genetic markers distinguish drug-type from fiber-type Cannabis sativa L. Plants 8(11), 496. Doi: https://doi.org/10.3390/plants8110496
  8. De Meijer, E.P.M., M. Bagatta, A. Carboni, P. Crucitti, V.M.C. Moliterni, P. Ranalli, and G. Mandolino. 2003. The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163(1), 335-346. Doi: https://doi.org/10.1093/genetics/163.1.335
  9. Dufresnes, C., C. Jan, F. Bienert, J. Goudet, and L. Fumagalli. 2017. Broad-scale genetic diversity of Cannabis for forensic applications. PLoS ONE 12(1), e0170522. Doi: https://doi.org/10.1371/journal.pone.0170522
  10. Evren, C. and G. Umut. 2019. The good face of Cannabis sativa: Cannabidiol. Düşünen Adam. 32(4), 283-288. Doi: https://doi.org/10.14744/DAJPNS.2019.00041
  11. Faux, A.-M., X. Draye, R. Lambert, R. d’Andrimod, P. Raulier, and P. Bertin. 2013. The relationship of stem and seed yields to flowering phenology and sex expression in monoecius hemp (Cannabis sativa L.). Eur. J. Agron. 47(1), 11-22. Doi: https://doi.org/10.1016/j.eja.2013.01.006
  12. García-Tejero, I.F., A. Hernández, C. Ferreiro-Vera, V.H. Duran, J. Hidalgo, C. Sánchez-Carnerero, and S. Casano. 2020. Yield of new hemp varieties for medical purposes under semi-arid Mediterranean environment conditions. Comun. Sci. 11, e3264. Doi: https://doi.org/10.14295/cs.v11i0.3264
  13. Glivar, T., J. Eržen, S. Kreft, M. Zagožen, A. Čerenak, B. Čeh, and E.T. Benković. 2020. Cannabinoid content in industrial hemp (Cannabis sativa L.) varieties grown in Slovenia. Ind. Crops Prod. 145, 112082. Doi: https://doi.org/10.1016/j.indcrop.2019.112082
  14. Hadener, M., S. Köning, and W. Weinmann. 2019. Quantitative determination of CBD and THC and their acid precursors in confiscated cannabis samples by HPLC-DAD. Forensic Sci. Int. 299, 142-150. Doi: https://doi.org/10.1016/j.forsciint.2019.03.046
  15. Janatová, A., A. Fraňková, P. Tlustoš, K. Hamouz, M. Božik, and P. Klouček. 2018. Yield and cannabinoids contents in different cannabis (Cannabis sativa L.) genotypes for medical use. Ind. Crops Prod. 112, 363-367. Doi: https://doi.org/10.1016/j.indcrop.2017.12.006
  16. Kojoma, M., H. Seki, S. Yoshida, and T. Murunaka. 2006. DNA polymorphisms in the tetrahydrocannabinolic acid (THCA) synthase gene in “drug-type” and “fiber – type” Cannabis sativa L. Forensic Sci. Int. 159(2-3), 132-140. Doi: https://doi.org/10.1016/j.forsciint.2005.07.005
  17. Marks, M.D., L. Tian, J.P. Wenger, S.N. Omburo, W. Soto-Fuentes, J. He, D.R. Gang, G.D. Weiblen, and R.A. Dixon. 2009. Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J. Exp. Bot. 60(13), 3715-3726. Doi: https://doi.org/10.1093/jxb/erp210
  18. Minsalud, Colombia Ministerio de Salud y Protección Social. 2018. Decreto 631, Por el cual se modifica el artículo 2.8.11; 11.1 y se adiciona el numeral 15 al artículo 2.8.11.9.1. del Decreto 780 de 2016. In: https://www.minsalud.gov.co/Normatividad_Nuevo/Decreto%20631%20de%202018.pdf; consulted: January, 2023.
  19. Naim-Feil, E., L.W. Pembleton, L.E. Spooner, A.L. Malthouse, A. Miner, M. Quinn, R. Polotnianka, R.M. Baillie, G.C. Spangenberg, and N.O.I. Cogan. 2021. The characterization of key physiological traits of medicinal cannabis (Cannabis sativa L.) as a tool for precision breeding. BMC Plant Biol. 21, 294. Doi: https://doi.org/10.1186/s12870-021-03079-2
  20. Petit, J., E.M.J. Salentijn, M.-J. Paulo, C. Thouminot, B.J. van Dinter, G. Magagnini, H.-J. Gusovius, K. Tang, S. Amaducci, S. Wang, B. Uhrlaub, J. Müssing, and L.M. Trindade. 2020. Genetic variability of morphological, flowering, and biomass quality traits in hemp (Cannabis sativa L.). Front. Plant Sci. 11, 102. Doi: https://doi.org/10.3389/fpls.2020.00102
  21. Piluzza, G., G. Delogu, A. Cabras, S. Marceddu, and S. Bullitta. 2013. Differentiation between fiber and drug types of hemp (Cannabis sativa L.) from a collection of wild and domesticated accessions. Genet. Resour. Crop Evol. 60, 2331-2342. Doi: https://doi.org/10.1007/s10722-013-0001-5
  22. PINE, Colombia Proyecto de Interés Nacional Estratégico. 2020. Industria del cannabis medicinal. In: https://www.portafolio.co/economia/gobierno-declara-proyecto-de-interes-nacional-a-la-industria-del-cannabis-544916; consulted: January, 2023.
  23. Poniatowska, J., K. Panasiewicz, M. Szalata, L. Zarina, S. Zute, and K. Wielgus. 2022. Variability of cannabinoid yields of fibre hemp cultivars depending on the sowing density and nitrogen fertilization. Plant Soil Environ. 68(11), 525-532. Doi: https://doi.org/10.17221/223/2022-PSE
  24. Potter, D.J. 2014. A review of the cultivation and processing of cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Test. Anal. 6(1-2), 31-38. Doi: https://doi.org/10.1002/dta.1531
  25. Sarkar, S., J. Banerjee, and S. Gantait. 2017. Sex-oriented research on dioecious crops of Indian subcontinent: An updated review. 3 Biotech 7, 93. Doi: https://doi.org/10.1007/s13205-017-0723-8
  26. Schumann, E., A. Peil, and W.E. Weber. 1999. Preliminary results of a German field trial with different hemp (Cannabis sativa L.) accessions. Genet. Resour. Crop Evol. 46, 399-407. Doi: https://doi.org/10.1023/A:1008696018533
  27. Small, E. 2015. Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. Bot. Rev. 81, 189-294. Doi: https://doi.org/10.1007/s12229-015-9157-3
  28. Small, E. 2018. Dwarf germplasm: The key to giant Cannabis hempseed and cannabinoid crops. Genet. Resour. Crop Evol. 65, 1071-1107. Doi: https://doi.org/10.1007/s10722-017-0597-y
  29. Staginnus, C., S. Zörntlein, and E. de Meijer. 2014. A PCR marker linked to a THCA synthase polymorphism is a reliable tool to discriminate potentially THC-rich plants of Cannabis sativa L. J. Forensic Sci. 59(4), 919-926. Doi: https://doi.org/10.1111/1556-4029.12448
  30. Trancoso, I., G.A.R. Souza, P.R. Santos, K.D. Santos, R.M.S.N. Miranda, A.L.P.M. Silva, D.Z. Santos, I.F. García-Tejero, and E. Campostrini. 2022. Cannabis sativa L.: Crop management and abiotic factors that affect phytocannabinoid production. Agronomy 12(7), 1492. Doi: https://doi.org/10.3390/agronomy12071492
  31. Vanhove, W., P. van Damme, and N. Meert. 2011. Factors determining yield and quality of illicit indoor cannabis (Cannabis spp.) production. Forensic Sci. Int. 212 (1-3), 158-163. Doi: https://doi.org/10.1016/j.forsciint.2011.06.006
  32. Welling, M.T., L. Liu, T. Shapter, C.A. Raymond, and G.J. King. 2016. Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica 208 (3), 463-475. Doi: https://doi.org/10.1007/s10681-015-1585-y
  33. Wróbel, T., M. Dreger, K. Wielgus, and R. Słomski. 2018. The application of plant in vitro cultures in cannabinoid production. Biotechnol. Lett. 40(3), 445-454. Doi: https://doi.org/10.1007/s10529-017-2492-1
  34. Yamamuro, T., H. Segawa, K. Kuwayama, K. Tsujikawa, T. Kanamori, and Y.T. Iwata. 2021. Rapid identification of drug-type and fiber-type cannabis by allele specific duplex PCR. Forensic Sci. Int. 318, 110634. Doi: https://doi.org/10.1016/j.forsciint.2020.110634

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.