Skip to main navigation menu Skip to main content Skip to site footer

Genetics parameters and path analysis in Cannabis sativa L.

Inflorescence of C. sativa. Photo: I. Pastrana-Vargas

Abstract

The ostracism to which the species was subjected in the last century generated a weak use of genetic variability in the genetic improvement of characteristics of interest. This study aimed to estimate genetic parameters, correlation, and path analysis for 13 agronomic traits, cannabidiol (CBD) and tetrahydrocannabinol (THC) content in 10 cannabis genotypes from different departments of Colombia. The study was conducted under greenhouse conditions with a polycarbonate cover and anti-aphid mesh at the La Esperanza farm in Pueblo Bello, Cesar (North Colombia). A randomized complete block design with 10 treatments (genotypes) and three replicates was used. Each experimental unit consisted of 20 plants obtained from mother plants and transplanted at 14 cm between rows and between plants. Significant differences (P≤0.01) were detected between genotypes for all traits and THC and CBD content. Heritability in a broad sense showed values higher than 82% for all the traits studied. Genetic variability between genotypes was detected for number of leaflets, internode length of main stem, length of petiole, central leaflet-length, width of central leaflet, number of stems per plant, CBD, and THC, which allowed obtaining genetic gains higher than 30%. There was a high, inverse, and significant phenotypic and genotypic correlation between the percentage of CBD and THC (r=-0.93**). Overall, width of central leaflet direct and indirect effects explains the association level between CBD and THC with the correlated traits. It is possible to increase CBD and THC by selecting genotypes with higher width of central leaflet.

Keywords

Cannabinoids, Correlations, Heritability, Genetic gain, Genetic variability

XML PDF

References

  1. Araméndiz-Tatis, H., C. Cardona-Ayala, M. Espitia-Camacho, A. Herrera-Contreras, and A. Villalba-Soto. 2023. Agronomic evaluation of Cannabis sativa (L.) cultivars in northern Colombia. Rev. Colomb. Cienc. Hortic. 17(1), e15695. Doi: https://doi.org/10.17584/rcch.2023v17i1.15695
  2. Atehortua, L. 2018. Nuevas fronteras científicas y tecnológicas para el mejoramiento y la producción de cannabis. Canna World Cong. 1(2), 41-50.
  3. Babaei, M. and L. Ajdanian. 2020. Screening of different Iranian ecotypes of cannabis under water deficit stress. Sci. Hortic. 260, 108904. Doi: https://doi.org/10.1016/j.scienta.2019.108904.
  4. Bevan, L., M. Jones, and Y. Zheng. 2021. Optimisation of nitrogen, phosphorus, and potassium for soilless production of Cannabis sativa in the flowering stage using response surface analysis. Front. Plant Sci. 12, 764103. Doi: https://doi.org/10.3389/fpls.2021.764103
  5. Burgel, L., J. Hartung, A. Pflugfelder, and S. Graeff-Hönninger. 2020. Impact of growth stage and biomass fractions on cannabinoid content and yield of different hemp (Cannabis sativa L.) genotypes. Agronomy 10(3), 372. Doi: https://doi.org/10.3390/agronomy10030372
  6. Campell, L.G., J. Dufresne, and S.A. Sabatino. 2020. Cannabinoid inheritance relies on complex genetic architecture. Cannabis Cannabinoid Res. 5(1), 105-106. Doi: https://doi.org/10.1089/can.2018.0015
  7. Cascini, F., A. Farcomeni, D. Migliorini, L. Lucini, L. Baldassarri, I. Boschi, S. Martello, S. Amaducci, and J. Bernardi. 2019. Highly predictive genetic markers distinguish drug-type from fiber-type Cannabis sativa L. Plants 8(11), 496. Doi: https://doi.org/10.3390/plants8110496
  8. CND, Commission on Narcotic Drugs. 2020. Statements following the voting on the WHO scheduling recommendations on cannabis and cannabis-related substances. E/CN.7/2020/CRP.24. In: https://www.unodc.org/documents/commissions/CND/CND_Sessions/CND_63Reconvened/ECN72020_CRP24_V2007524.pdf; consulted: February, 2024.
  9. Cruz, C. 2020. Programa GENES V.1990.2020-15 - Aplicativo computacional em genética e estatística. In: Universidade Federal de Viçosa, https://www.ufv.br/dbg/genes/genes.htm; consulted: July, 2020.
  10. Dufresnes, C., C. Jan, F. Bienert, J. Goudet, and L. Fumagalli. 2017. Broad-scale genetic diversity of Cannabis for forensic applications. PLoS ONE 12(1), e0170522. Doi: https://doi.org/10.1371/journal.pone.0170522
  11. Feder, C.L., O. Cohen, A. Shapira, I. Katzir, R. Peer, O. Guberman, S. Procaccia, P. Berman, M. Flaishman, and D. Meiri. 2021. Fertilization following pollination predominantly decreases phytocannabinoids accumulation and alters the accumulation of terpenoids in cannabis inflorescences. Front. Plant Sci. 12, 753847. Doi: https://doi.org/10.3389/fpls.2021.753847
  12. García-Tejero, I., A. Hernández, C. Ferreiro-Vera, V.H. Duran Zuazo, J. Hidalgo, C. Sánchez-Carnerero and S. Casano. 2020. Yield of new hemp varieties for medical purposes under semi-arid Mediterranean environment conditions. Comun. Sci. 11, e3264. Doi: https://doi.org/10.14295/cs.v11i0.3264
  13. Hallauer, A.R., J.B. Miranda Filho, and M.B. Carena. 2010. Quantitative genetics in maize breeding. pp. 577-653. In: Quantitative genetics in maize breeding. Handbook of plant breeding. Vol. 6. Springer, New York, NY. Doi: https://doi.org/10.1007/978-1-4419-0766-0_12
  14. Hemavathy, A.T., N. Shunmugavalli, and G. Anand. 2015. Genetic variability, correlation and path co-efficient studies on yield and its components in mungbean [Vigna radiata (L.) Wilezek]. Legume Res. 38(4), 442-446. Doi: https://doi.org/10.5958/0976-0571.2015.00050.8
  15. Johnson, H.W., H.F. Robinson, and R.E. Comstock. 1955. Estimates of genetic and environmental variability in soybeans. Agron J. 47(7), 314-318. Doi: https://doi.org/10.2134/agronj1955.00021962004700070009x
  16. Manggoel, W.N., M.I. Uguru, O.N. Ndam, and M.A. Dasbak. 2012. Genetic variability, correlation, and path coefficient analysis of some yield components of ten cowpea [Vigna unguiculata (L.) Walp] accessions. J. Plant Breed. Crop Sci. 4(5), 80-86.
  17. Marks, M.D., L. Tian, J.P. Wenger, S.N. Omburo, W. Soto-Fuentes, J. He, D.R. Gang, G.D. Weiblen, and R.A. Dixon. 2009. Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J. Exp. Bot. 60(13), 3715-3726. Doi: https://doi.org/10.1093/jxb/erp210
  18. Martínez. V., A.I. De-Hond, A. Borelli, R. Capasso, M.D del Castillo, and R. Abalo. 2020. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: useful nutraceuticals? Int. J. Mol. Sci. 21(9), 3067. Doi: https://doi.org/10.3390/ijms21093067
  19. Minsalud, Colombia Ministerio de Salud y Protección Social. 2018. Decreto 631, por el cual se modifica el artículo 2.8.11; 11.1 y se adiciona el numeral 15 al artículo 2.8.11.9.1. del Decreto 780 de 2016. Bogota.
  20. Naim-Feil, E., E.J. Breen, L.W. Pembleton, L.E. Spooner, G.C. Spangenberg, and N.O.I. Cogan. 2022. Empirical evaluation of inflorescences’ morphological attributes for yield optimization of medicinal Cannabis cultivars. Front. Plant Sci. 13, 858519. Doi: https://doi.org/10.3389/fpls.2022.858519
  21. Pessoa, A.M.S., C.H.C. Bertini, E.B.L. Castro, L.M. Freitas, and L.B.R. Araújo. 2023. Genetic parameters and selection indices of cowpea genotypes for green grain production. Rev. Caatinga 36(2), 310-319. Doi: http://doi.org/10.1590/1983-21252023v36n208rc
  22. Poniatowska, J., K. Panasiewicz, M. Szalata, L. Zarina, S. Zute, and K. Wielgus. 2022. Variability of cannabinoid yields of fibre hemp cultivars depending on the sowing density and nitrogen fertilisation. Plant Soil Environ. 68(11), 525-532. Doi: https://doi.org/10.17221/223/2022-PSE
  23. Richins, R.D., L. Rodriguez-Uribe, K. Lowe, R. Ferral, and M.A. O'Connell. 2018 Accumulation of bioactive metabolites in cultivated medical Cannabis. PLoS ONE 13(7), e0201119. Doi: https://doi.org/10.1371/journal.pone.0201119
  24. Robinson, H., R.E. Comstock, and P.H. Harvey. 1949. Estimates of heritability and degree of dominance in corn. Agron. J. 41(8), 353-359. Doi: https://doi.org/10.2134/agronj1949.00021962004100080005x
  25. Saloner, A. and N. Bernstein. 2020. Response of medical cannabis (Cannabis sativa L.) to nitrogen supply under long photoperiod. Front. Plant Sci. 11, 572293. Doi: https://doi.org/10.3389/fpls.2020.572293
  26. Small, E. 2018. Dwarf germplasm: the key to giant Cannabis hempseed and cannabinoid crops. Genet Resour. Crop Evol. 65, 1071-1107. Doi: https:doi.org/10.1007/s10722-017-0597-y
  27. Trancoso, I., G.A.R. Souza, P.R. Santos, K.D. Santos, R.M.S.N. Miranda, A.L.P.M. Silva, D.Z. Santos, I.F. García-Tejero, and E. Campostrini. 2022. Cannabis sativa L.: crop management and abiotic factors that affect phytocannabinoid production. Agronomy 12, 1492. Doi: https://doi.org/10.3390/agronomy12071492
  28. Tsaliki, E., A. Kalivas, Z. Jankauskiene, M. Irakli, C. Cook, I. Grigoriadis, I. Panoras, I. Vasilakoglou, and K. Dhima. 2021. Fibre and seed productivity of industrial hemp (Cannabis sativa L.) varieties under Mediterranean conditions. Agronomy 11(1), 171. Doi: https://doi.org/10.3390/agronomy11010171
  29. Vergara, D., C. Feathers, E.L. Huscher, B. Holmes, J.A. Haas, and N.C. Kane. 2021. Widely assumed phenotypic associations in Cannabis sativa lack a shared genetic basis. PeerJ 20(9), e10672. Doi: https://doi.org/10.7717/peerj.10672
  30. Weldemichael, G., S. Alamerew, and T. Kufa. 2017. Genetic variability, heritability, and genetic advance for quantitative traits in coffee (Coffea arabica L.) accessions in Ethiopia. Afr. J. Agric. Res. 12(21), 1824-1831. Doi: https://doi.org/10.5897/AJAR2016.12059
  31. Yamamuro, T., H. Segawa, K. Kuwayama, K. Tsujikawa, T. Kanamori, and Y.T. Iwata. 2021. Rapid identification of drug-type and fiber-type cannabis by allele specific duplex PCR. Forensic Sci. Int. 318, 110634. Doi: https://doi.org/10.1016/j.forsciint.2020.110634

Downloads

Download data is not yet available.

Most read articles by the same author(s)