Skip to main navigation menu Skip to main content Skip to site footer

Fluorescencia como indicador de estrés en <i>Helianthus annuus</i> L. Una revisión

Abstract

El girasol es una Asteraceae con alto potencial como planta de corte. Esta planta está expuesta a una amplia fluctuación de condiciones ambientales como luz, temperatura, suministro de agua y nutrientes. Estas condiciones pueden generar estrés sobre las plantas. El girasol presenta resistencia a la sequía, bajas y altas temperaturas. Los efectos del estrés dependen de la intensidad y de la etapa fenológica en que se presente. La fluorescencia puede ser empleada como herramienta para obtener información acerca de la influencia del estrés sobre el estado fisiológico del aparato fotosintético de las plantas y su respuesta será indicadora del daño o alteración en él. El objetivo de la presente revisión es exponer resultados de investigaciones científicas sobre los diferentes tipos de estrés evaluados en Helianthus annuus y la forma como ha sido empleada la fluorescencia como un indicador de dicho estrés. Contribuyendo así a ampliar la información disponible sobre esta importante especie.

Keywords

Asteraceae, girasol, fotosistema II, estrés hídrico.

PDF (Español)

References

  • Ahmad, M.S.A., M. Ashraf y M. Hussain. 2011. Phytotoxic effects of nickel on yield and concentration of macro- and micro-nutrients in sunflower (Helianthus annuus L.) achenes. J. Hazard. Mater. 185(2-3), 1295-1303. Doi: 10.1016/j.jhazmat.2010.10.045
  • Ahmed, C.B., B.B. Rouina, S. Sensoy, M. Boukhris y F.B. Abdallah. 2009. Changes in gas exchange, proline accumulation and antioxidative enzyme activities in threeolive cultivars under contrasting water availability regimes. Environ. Exp. Bot. 67, 345-352. Doi: 10.1016/j.envexpbot.2009.07.006
  • Akram, N.A., M. Ashraf y F. Al-Qurainy. 2012. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci. Hortic. 142, 143-148. Doi: 10.1016/j.scienta.2012.05.007
  • Andrade, F.H., L.A. Aguirrezábal y R.H. Rizzalli. 2002. Crecimiento y rendimiento comparados. pp. 57-96. En: Andrade F.H. y V.O. Sadras (eds.). Bases para el manejo del maíz, el girasol y la soja. 2a ed. E.E.A. INTA Balcarce, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina.
  • Araki, H. 2006. Water uptake of soybean (Glycine max L. Merr.) during exposure to O2 deficiency and field level CO2 concentration in the root zone. Field Crops Res. 96, 98-105. Doi: 10.1016/j. fcr.2005.05.007
  • Baker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 59, 89-113. Doi: 10.1146/annurev.arplant
  • Baker, N.R. y E. Rosenqvst. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55(403), 1607-1621. Doi: 10.1093/jxb/erh196
  • Bange, M.P., S.P. Milroy y P. Thongbai. 2004. Growth and yield of cotton in response to waterlogging. Field Crops Res. 88, 129-142. Doi: 10.1016/j. fcr.2003.12.002
  • Boru, G., T. Van Toai, J. Alves, D. Hua y M. Knee. 2003. Responses of soybean to oxygen deficiency and elevated root-zone carbon dioxide concentration. Ann. Bot. 91. 447-453.
  • Cechin, I., T. Fumis y A. Dokkedal. 2007. Growth and physiological responses of sunflower plants exposed to ultraviolet-B radiation. Cienc. Rural 37(1), 85-90. Doi: 10.1590./S0103-84782007000100014
  • Chapman, S.C. y A.J. de la Vega, 2002. Spatial and seasonal effects confounding interpretation of sunflower yields in Argentina. Field Crops Res. 73, 107-120. Doi: 10.1016/S0378-4290(01)00185-X
  • Ciompi, S., E. Gentili, L. Guidi y G. Soldatini. 1996. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Sci. 118, 177-184.
  • Correia, M.J., M.L. Osório, J. Osório, I. Barrote, M. Martins y M.M. David. 2006. Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. Environ. Exp. Bot. 58 (1-3), 75-84. Doi: 10.1016/j.envexpbot.2005.06.015
  • Di Cagno, R., L. Guidi, A. Stefani y G.F. Soldatini. 1999. Effects of cadmium on growth of Helianthus annuus seedlings: Physiological aspects. New Phytologist 144(1), 65-71.
  • Else, M.A., F. Janowiak, C.J. Atkinson y M.B. Jackson. 2009. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 103(2), 313-323.
  • Flexas, J., J.M. Escalona, S. Evain, J. Gulías, I. Moya, C.B. Osmond y H. Medrano. 2002. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol. Plant. 114(02), 231-240.
  • Fournier, J., A. Roldán, C. Sánchez, G. Alexandre y M. Benlloch. 2005. K+ starvation increases water uptake in whole sunflower plants. Plant Sci. 168, 823-829.
  • Fozia, A., A.Z. Muhammad, A. Muhammad y M.K. Zafar. 2008. Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J. Environ. Sci. 20 (12), 1475-1480.
  • Ghobadi, M., S. Taherabadi, M.E. Ghobadi, G.R. Mohammadi y S. Jalali-Honarmand. 2013. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Ind. Crops Prod. 50(0), 29-38. Doi: 10.1016/j.indcrop.2013.07.009
  • Glynn, P., C. Fraser y A. Gillian. 2003. Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. J. Arboriculture 29(02). 61-65.
  • González, S., H. Perales y M. Salcedo. 2008. La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. REB 27(4), 119-129.
  • Grassini, P., G. Indaco, M. Lopez, A. Hall y N. Trapani. 2007. Responses to short-term waterlogging during grain filling in sunflower. Field Crops Res. 101, 352-363.
  • Guidi, L. y E. Degl'Innocenti. 2012. Chlorophyll a fluorescence in abiotic stress. pp. 359-398. In: Venkateswarlu, B., A.K. Shanker, C. Shanker y M. Maheswari (eds.). Crop stress and its management: Perspectives and strategies. Springer, The Netherlands. Doi: 10.1007/978-94-007-2220-0_10
  • Gupta, D., H. Vandenhove y M. Inouhe. 2013. Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. pp. 73-94. En: Gupta, D.K., F.J. Corpas y J.M. Palma (eds.). Heavy metal stress in plants. Springer, Berlin.
  • Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I.S. Møller y P. White. 2012. Functions of macronutrients. pp. 135-189. En: Marschner, P. (ed.). Marschner's mineral nutrition of higher plants. 3th ed. Academic Press, San Diego, CA.
  • Heber, U. 2002. Irrungen, Wirrungen?. The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth. Res. 73(1-3), 223-231.
  • Hopkins, L., M.A Bond y K. Tobin. 2002. Ultraviolet-B radiation reduces the rates of cell division and elongation in the primary leaf wheat (Triticum aestivum L. cv. Maris Huntsman). Plant Cell Environ. 25, 617-624.
  • Jansen, M.A.K., V. Gaba y B.M. Greenberg. 1998. Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci. 3(4), 131-135.
  • January, M.C., T.J. Cutright, H.V. Keulen y R. Wei. 2008. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70(3), 531-537.
  • Jordan, B.R. 1996. The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv. Bot. Res. 22, 97-162.
  • Kakani, V.G., K.R. Reddy, D. Zhao y K. Sailaja. 2003. Field crop responses to ultraviolet-B radiation: a review. Agr. For. Meteor. 120(1-4), 191-218.
  • Kastori, R., M. Plesnicar, Z. Sakac, D. Pankovic y I. Arsenijevic-Maksimovic. 1998. Effect of excess lead on sunflowergrowth and photosynthesis. J. Plant Nutr. 21(1), 75-85.
  • Kerr, J.B. y C.T. McElroy. 1993. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Sci. 262, 1032-1034.
  • Liao, T. y H. Lin. 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Counc. 25, 148-157.
  • Lichtenthaler, H.K., C. Buschmann y M. Knapp. 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43(3), 379- 393.
  • Liu, L.X., S.M. Xu y K.U. Woo. 2005. Solar UV-B radiation on growth, photosynthesis and the xanthophyll cycle in tropical acacias and eucalyptus. Environ. Exp. Bot. 54(2), 121-130. Doi: 10.1016/j.envexpbot.2004.06.006
  • Loomis, R. y J. Amthor. 1999. Yield potential, plant assimilatory capacity and metabolic efficiencies. Crop Sci. 39, 1584-1596.
  • Maxwell, K. y G.N. Johnson. 2000. Chlorophyll fluorescence. A practical guide. J. Exp. Bot 51(345), 659-668.
  • Mercau, J.L., V.O. Sadras, E.H. Satorre, C. Messina, C. Balbi, M. Uribelarrea y A.J. Hall. 2001. On-farm assessment of regional and seasonal variation in sunflower yield in Argentina. Agric. Syst. 67, 83-103.
  • Molina-Montenegro, M., A. Zurita-Silva y R. Oses. 2011. Efecto de la disponibilidad hídrica sobre el desempeño fisiológico y productivo de un cultivo de lechuga (Lactuca sativa). Cienc. Inv. Agr. 38(1), 65-74.
  • Mouget, J. y G. Tremblin. 2002. Suitability of the fluorescence monitoring system (FMS, Hansatech) for measurement of photosynthetic characteristics in algae. Aquatic Bot. 74, 219-231.
  • Neto, A.D.d.A., P., Amorim, D. Pereira y A. Conceição. 2011. Fluorescência da clorofila como uma ferramenta possível para seleção de tolerânciaà salinidade em girasol. Rev. Cienc. Agron. 42(4), 893-897.
  • Neto, A.T., E. Campostrini, G.J. Oliveira y R.E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 104(2), 199-209. Doi: 10.1016/j.scienta.2004.08.013
  • Oukarroum, A., S.E., Madidi, G. Schansker y R.J. Strasser. 2007. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIPunder drought stress and re-watering. Environ. Exp. Bot. 60, 438-446.
  • Oukarroum, A., G. Schansker y R.J. Strasser. 2009. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chla fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol. Plant. 137, 188-199.
  • Pankovic, D., M. Plesnicar, I. Arsenijevic-Maksimovic, N. Petrovic, Z. Sakac y R. Kastori. 2000. Effects of nitrogen nutrition on photosynthesis in Cd- treated sunflower plants. Ann. Bot. 86(4), 841-847.
  • Percival, G.C. y S.A. Fraser. 2001. Measurement of the salinity and freezing tolerance of Crataegus genotypes using chlorophyll fluorescence. J. Arboriculture 27(5), 233-245.
  • Phillips, I.D.J. 1964. Root-shoot Hormone Relations I. The Importance of an aerated root system in the regulation of growth hormone levels in the shoot of Helianthus annuus. Ann. Bot. 28(1), 17-35.
  • Pienkowski, M. W., A.R. Watkinson, G. Kerby, M. Smith y J.S. Moss. 1998. An experimental investigation, using stomatal conductance and fluorescence, of the flood sensitivity of Boltonia decurrens and its competitors. J. Applied Ecol. 35(4), 553-561.
  • Poormohammad Kiani, S., P. Maury, A. Sarrafi y P. Grieu. 2008. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci. 175, 565-573. Doi: 10.1016/j.plantsci.2008.06.002
  • Ribeiro, R.V., E.C. Machado y R.F. Oliveira. 2004. Growth and leaf temperature effects on photosynthesis of sweet orange plants infected with Xylella fastidiosa. Plant Pathol. 53(3), 334-340.
  • Ricklefs, R.E. y G.L. Miller. 2000. Ecology. 4th ed. Free- man and Company, New York, NY.
  • Rohacek, K. 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40(1), 13-29.
  • Rohacek, K. y M. Bartak. 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37(03), 339- 363.
  • Saeed, M., M. Ashraf, M. Shahbaz y N. Aisha. 2009a. Growth and photosynthesis of salt-stressed sunflower (Helianthus annuus) plants as affected by foliar-applied different potassium salts. J. Plant Nutr. Soil Sci. 172(6), 884-893. Doi: 10.1002/jpln.200900102 [
  • Saeed, M., M. Ashraf y N. Aisha. 2009b. Effectiveness of potassium sulfate in mitigating salt-induced adverse effects on different physio-biochemical attributes in sunflower (Helianthus annuus L.). Flora 204(6), 471-483. Doi: 10.1016/j.flora.2008.05.008 [
  • Santos, C.V. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 103(1), 93-99. Doi: 10.1016/j.scienta.2004.04.009
  • Scheuermann, R., K. Biehler, T. Stuhlfauth y H. Fock. 1991. Simultaneous gas exchange and fluorescence measurements indicate differences in the response of sunflower, bean and maize to water stress. Photosynth. Res. 27(3), 189-197.
  • Schreiber, U. y W. Bilger. 1987. Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. En: Tenhunen, J.D., F.M. Catarino, O.L. Lange y W.C. Oechel (eds.). Plant response to stress. Springer-Verlag, Berlín.
  • Shahbaz, M., M. Ashraf, N. Akram, A. Hanif, S. Hameed, S. Joham y R. Rehman. 2011. Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiol Plant. 33(4), 1113-1122. Doi: 10.1007/s11738-010-0639-y
  • Silva, M.L.O., M.A. Faria, A.R. de Morais, G.P Andrade y E. Lima. 2007. Crescimento e produtividade do girassol cultivado na entressafracom diferentes lâminas de água. Rev. Bras. Eng. Agr. Amb. 11(5), 482-488.
  • Smillie R.M. y S.E. Hetherington. 1990. Screening for stress tolerance by chlorophyll fluorescence. pp. 229-233. En: Hashimoto, Y., P.J. Kramer, H. Nonami y R.B. Strain (eds.). Techniques in Plant Science. Academic Press, San Diego, CA.
  • Taiz, L. y E. Zeiger. 2010. Plant Physiology. 5th ed. Sinauer Associates. Sunderland, MA.
  • Takahashi, S., S.E. Milward, W. Yamori, J.R. Evans, W. Hillier y M.R. Badger. 2010. The solar action spectrum of photosystem II damage. Plant Physiol. 153, 988-993. Doi: 10.1104/pp.110.155747
  • Turgut, C., M.K. Pepe y T.J. Cutright. 2005. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils. Chemosphere 58(8), 1087-1095.
  • Vass, I., 2012. Molecular mechanisms of photodamage in the Photosystem II complex. Biochim. Biophys. Acta 1817, 209-17. Doi: 10.1016/j.bbabio.2011.04.014
  • Waldhoff, D., B. Furch y W.J. Junk. 2002. Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. Environ. Exp. Bot. 48(3), 225-235.
  • Wample, R. y D. Reid. 1975. Effect of aeration on the flood-induced formation of adventitious roots and other changes in sunflower (Helianthus annuus L.). Planta 127(3), 263-270.
  • Zobiole, L.H.S., C. de Castro, F.A. de Oliveira y A.d.O. Junior. 2010. Marcha de absorcao de macronutrientes na cultura do girassol. Rev. Bras. Cienc. Solo 34(2), 425-433. Doi: 10.1590/S0100-06832010000200016

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >>