El estrés por boro afecta la fotosíntesis y la síntesis de compuestos antioxidantes en plantas. Una revision

Main Article Content

Autores

Darwin L. Moreno
Ivonne A. Quiroga
Helber Enrique Balaguera-López
Stanislav Magnitskiy

Abstract

El estrés causado por deficiencia o toxicidad de boro es común en plantas cultivadas. En la actualidad, el papel del boro en la fotosíntesis y sus efectos en este proceso es desconocido. La fotosíntesis puede presentar limitación estomática, debido a la disminución en el intercambio gaseoso, y limitación no estomática, que se caracteriza por disminuciones en la actividad de enzimas relacionadas con el ciclo de Calvin y alteraciones en parámetros de la fluorescencia de la clorofila a, debido al desacople generado entre las fases foto y síntesis de la fotosíntesis, propiciando un aumento en los contenidos de especies reactivas de oxígeno que afectan negativamente algunas moléculas, estructuras celulares y la eficiencia fotosintética. Sin embargo las plantas tienen mecanismos de tolerancia ante esta condición de estrés mediante respuestas antioxidantes enzimáticas (polifenol oxidasa, ascorbato oxidasa, monodeshidroascorbato reductasa, deshidroascorbato reductasa y catalasa) y no enzimáticas (ácido ascórbico, glutation), las cuales varían en su expresión de acuerdo a la especie y al estado fenológico de la misma. 

Article Details

Licence

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.

References

Agustí, M., A. Martínez-Fuentes, C. Mesejo, M. Juan y V. Almela. 2003. Cuajado y desarrollo de los frutos críticos. Serie de Divulgación Técnica No. 55. Generalitat Valenciana, Conselleria D’ Agricultura, Peixca I Alimentacio, Valencia, España.

Ahmad, W., A. Niaz., S. Kanwal y K. Rasheed. 2009. Role of boron in plant growth: a review. J. Agric. Res. 47(3), 329-338.

Archana, N. 2013. Antioxidant responses and water status in Brassica seedlings subjected to boron stress. Acta Physiol Plant. 35, 697-706. Doi: 10.007/s11738-012-1110-z

Baker, N. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant. Biol. 59, 89-113. Doi: 10.1146/annurev.arplant.59.032607.092759

Bariya, H., S. Bagtharia y A. Patel. 2014. Boron: A promising nutrient for increasing growth and yield of plants. pp. 153-169. En: Hawkesford, M.J., S. Kopriva y L.J. De Kok (eds.). Nutrient use efficiency in plants, concepts and approaches. Springer International Publishing, Cham, Suiza. Doi: 10.1007/978-3-319-10635-9_6

Blevins, D. y K. Lukaszewski. 1998. Boron in plant structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 481-500.

Bogiani. J., A, Estevens y C. Rosolem. 2013. Carbohydrate production and transport in cotton cultivars grown under boron deficiency. Sci. Agric. 70(6), 442-448.

Botta, A., M. Marcon., C. Marín, N. Sierra, M. Carrion y R. Piñol. 2007. Mejora en cuajado y calibre tras la aplicación de Boro con aminoácidos en diferentes cultivos. pp. 592-595. En: Memorias XI Congreso SECH, Albacete, España.

Broadley, M., P. Brown, I. Cakmak, Z. Rengel y F. Zhao. 2012. Function of nutrients: Micronutrients. pp. 191-248. En: Marschner, P. (ed). Marschner’s mineral nutrition of higher plants. 3rd ed. Elsevier Ltda., Londres.
Brown, P y B. Shelp. 1997. Boron mobility in plants. Plant Soil 193, 85-101.

Camacho, J., J. Rexach y A. Gonzales-Fonte. 2008. Boron in plants: Deficiency and toxicity. J. Integ. Plant Biol. 50(10), 1247-1255. Doi: 10.1111/j.1744-7909.2008.00742.x

Chen, M., S. Mishra, S. Heackathorn, J. Frantz y C. Krause. 2014. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. J. Plant Physiol. 171, 235-242.

Goldbach, H y M. Wimmer. 2007. Boron in plants and animals: Is there a role beyond cell-wall structure? J. Plant Nutr. Soil Sci. 170(1), 39-48.

González, S., H. Perales y M. Salcedo. 2008. La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. REB 27(4), 119-129.

Guidi, L., E. Degl´Innocenti, G. Carmassi, D. Massa y A. Pardossi. 2011. Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water. Environ. Exp. Bot. 73, 57-63. Doi: 10.1016/j.envexpbot.2010.09.017

Guidon, L., X. Dong, L. Liu, L. Wu, S. Peng y C. Jiang. 2014. Boron deficiency is correlated with changes in cell wall structure that lead to growth defects in the leaves of navel orange plants. Sci. Hortic. 176, 54-62. Doi: 10.1016/j.scienta.2014.06.036

Han, S., L. Chen, H. Jiang, B. Smith, L. Yang y Y. Xie. 2008. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J. Plant Physiol. 165, 1331-1341. Doi: 10.1016/j.jplph.2007.11.002

Han, S., N. Tang, H. Jiang, L. Yang, Y. Li y L. Chen. 2009. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci. 176, 143-153. Doi: 10.1016/j.plantsci.2008.10.004

Herbers, K., P. Meuwly, W. Frommer, J. Métraux y U. Sonnewald. 1996. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8, 793-803. Doi: 10.1105/tpc.8.5.793

Horn, R., G. Grundmann y H. Paulsen. 2007. Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb). J. Mol. Biol. 366, 1045-1054. Doi: 10.1016/j.jmb.2006.11.069

Kaya, C. y M. Ashraf. 2015. Exogenous application of nitric oxide promotes growth and oxidative defense system in highly boron stressed tomato plants bearing fruit. Sci. Hortic. 185, 43-47. Doi: 10.1016/j.scienta.2015.01.009

Kobayashi, M., N. Kouzu, A. Inam., K. Toyooka, Y. Konishi, K. Matsuoka y T. Matoh. 2011. Characterization of Arabidopsis CTP:3-Deoxy-D-manno-2-Octulosonate Cytidylyltransferase (CMP-KDO synthetase), the enzyme that activates KDO during rhamnogalacturonan II biosynthesis. Plant Cell Physiol. 52(10), 1832-1843. Doi: 10.1093/pcp/pcr120

Krapp, A., B. Hofmann, C. Schafêr y M. Sititt. 1993. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ‘sink regulation’ of photosynthesis?. Plant J. 3(6), 817-828. Doi: 10.1111/j.1365-313X.1993.00817.x

Landi, M., D. Remorini, A. Pardossi y L. Guidi. 2013a. Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. J. Plant Res. 126, 775-786. Doi: 10.1007/s10265-013-0575-1

Landi, M., A. Pardossi, D. Remorini y L. Guidi. 2013b. Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environ. Exp. Bot. 85, 64-75. Doi: 0.1016/j.envexpbot.2012.08.008

Lehto, T., T. Ruuhola y B. Dell. 2010. Boron in forest trees and forest ecosystems. For. Ecol. Manage. 260, 2053-2069. Doi: 10.1016/j.foreco.2010.09.028

Maxwell, K. y G. Johnson. 2000. Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51(345), 659-668.

Mishra, S., J. Frantz, F. Yu y J. Gray. 2009. Effects of boron deficiency on geranium grown under different nonphotoinhibitory light levels. J. Amer. Soc. Hort. Sci. 134(2), 183-193. Doi: 10.1007/s11104-011-0888-6

Miwa, K. y T. Fujiwara. 2010. Boron transport in plants: coordinated regulation of transporters. Ann. Bot. 105, 1103-1108. Doi:10.1093/aob/mcq044

Mukhopadhyay, M., P. Ghosh y T. Mondal. 2013. Effect of boron deficiency on photosynthesis and antioxidant responses of young tea plantlets. Rus. J. Plant Physiol. 60(5), 633-639. Doi: 10.1134/S1021443713030096

Ozturk, M., S. Sakcali, S. Gucel y H. Tombuloglu. 2010. Boron and plants. pp. 275-310. En: Ashraf, M. (ed.). Plant adaptation and phytoremediation. Springer Books. Doi: 1007/978-90-481-9370-7_13

Papadakis, I., K. Dimassi, A. Bosabalidis, I. Therios, A. Patatas y A. Giannakoula. 2004. Effects of B excess on some physiological and anatomical parameters of Navelina orange plants grafted on two rootstocks. Environ. Exp. Bot. 51, 247-257. Doi: 10.1016/j.plantsci.2003.10.027

Pinho, L., E. Campostrini, P. Monnerat, A. Torres, A. Assis, C. Marciano y Y. Bastos. 2010. Boron deficiency affects gas exchange and photochemical efficiency (JPI test parameters) in green dwarf Coconut. J. Plant Nutr. 33, 439-451. Doi: 10.1080/01904160903470471

Reid, R., J. Hayes, A. Post, J. Stangoulis y R. Graham. 2004. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 25, 1405-1414.

Rezaee, F. Ghanati, F. y M. Behmanesh. 2013. Antioxidant activity and expression of catalase gene of Eustoma grandiflorum L. in response to boron and aluminum. South Afr. J. Bot. 84, 13-18. Doi: 10.1016/j.sajb.2012.09.006

Rolland, F., E. Baena-Gonzalez y J. Sheen. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675-709. Doi: 10.1146/annurev.arplant.57.032905.105441

Sang, W., Z. Huang, Y. Qi, L. Yang, P. Guo y L. Chen, L. 2015. An investigation of boron – toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics. J. Proteomics 123, 128-146. Doi: 10.1016/j.jprot.2015.04.007

Sheen, J. 1994. Feedback control of gene expression. Photosynth. Res. 39, 427-438.

Sheng, O., S. Song, S. Peng y X. Deng. 2009. The effects of low boron on growth, gas exchange, boron concentration and distribution of ‘Newhall’ navel orange (Citrus sinensis Osb.) plants grafted on two rootstocks. Sci. Hortic. 121, 278-283. Doi: 10.1016/j.scienta.2009.02.009

Singh, D., J. Beloy, J. McInerney y L. Day. 2012. Impact of boron, calcium and genetic factor son vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 132, 1161-1170. Doi: 10.1016/j.foodchem.2011.11.045

Sinha, V., A. Grover, Z. Ahmed y V. Pande. 2014. Isolation and functional characterization of DNA damage repair protein (DRT) from Lepidium latifolim L. C. R. Biol. 337, 302-310. Doi: 10.1016/j.crvi.2014.03.006

Sotiropoulos, T., I. Therios, K. Dimmasi, A. Bosabalidis y G. Kofidis. 2002. Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. J. Plant Nutr. 25(6), 1249-1261. Doi: 10.1081/PLN-120004386

Stangoulis, J., R. Reid, P. Brown y R. Graham. 2001. Kinetic analysis of boron transport in Chara. Planta 213, 142-146.

Stavrianakou, S., G. Liakopoulos y G. Karabourniotis. 2006. Boron deficiency effects on growth, photosynthesis and relative concentrations of phenolics of Dittrichia viscosa (Asteraceae). Environ. Exp. Bot. 56, 293-300. Doi: 10.1016/j.envexpbot.2005.03.007

Takano, J., K. Noguchi, M. Yasumori, M. Kobayashi, Z. Gajdos, K. Miwa, H. Hayashi, T. Yoneyama y T. Fujiwara. 2002. Arabidopsis boron transporter for xylem loading. Nature 420(21), 337-340.

Takano, J., K. Miwa y T. Fujiwara. 2008. Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci. 13(8), 451-457. Doi: 10.1016/j.tplants.2008.05.007

Tanaka, M. y T. Fujiwara. 2008. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch. Eur. J. Physiol. 456, 671-677. Doi: 10.1007/s00424-007-0370-8

Turan, M., C. Kayihan, F. Eyidogan, Y. Ekmekci, M. Yucel y H. Oktem.2014. Evaluation of photosynthetic performance of wheat cultivars exposed to boron toxicity by the JIP fluorescence test. Photosynth. 52(4), 555-563. Doi: 10.1007/s.11099-014-0065-2

Wimmer, M. y T. Eichert. 2013. Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Sci. 203-204, 25-32. Doi: 10.1016/j.plantsci.2012.12.012

Yusuf, M., Q. Fariduddin y A. Ahmad.2011. 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere 85, 1574-1584. Doi: 10.1016/j.chemosphere.2011.08.004

Zhao, D. y D. Oosterhuis.2002. Cotton carbon exchange, nonstructural carbohydrates, and boron distribution in tissues during development of boron deficiency. Field Crops Res. 78, 75-87.

Downloads

Download data is not yet available.