El estrés por boro afecta la fotosíntesis y la síntesis de compuestos antioxidantes en plantas. Una revision
Abstract
El estrés causado por deficiencia o toxicidad de boro es común en plantas cultivadas. En la actualidad, el papel del boro en la fotosíntesis y sus efectos en este proceso es desconocido. La fotosíntesis puede presentar limitación estomática, debido a la disminución en el intercambio gaseoso, y limitación no estomática, que se caracteriza por disminuciones en la actividad de enzimas relacionadas con el ciclo de Calvin y alteraciones en parámetros de la fluorescencia de la clorofila a, debido al desacople generado entre las fases foto y síntesis de la fotosíntesis, propiciando un aumento en los contenidos de especies reactivas de oxígeno que afectan negativamente algunas moléculas, estructuras celulares y la eficiencia fotosintética. Sin embargo las plantas tienen mecanismos de tolerancia ante esta condición de estrés mediante respuestas antioxidantes enzimáticas (polifenol oxidasa, ascorbato oxidasa, monodeshidroascorbato reductasa, deshidroascorbato reductasa y catalasa) y no enzimáticas (ácido ascórbico, glutation), las cuales varían en su expresión de acuerdo a la especie y al estado fenológico de la misma.
Keywords
fluorescencia de clorofila, ciclo de Calvin, nutrición mineral, toxicidad, ROS
References
- Agustí, M., A. Martínez-Fuentes, C. Mesejo, M. Juan y V. Almela. 2003. Cuajado y desarrollo de los frutos críticos. Serie de Divulgación Técnica No. 55. Generalitat Valenciana, Conselleria D’ Agricultura, Peixca I Alimentacio, Valencia, España.
- Ahmad, W., A. Niaz., S. Kanwal y K. Rasheed. 2009. Role of boron in plant growth: a review. J. Agric. Res. 47(3), 329-338.
- Archana, N. 2013. Antioxidant responses and water status in Brassica seedlings subjected to boron stress. Acta Physiol Plant. 35, 697-706. Doi: 10.007/s11738-012-1110-z
- Baker, N. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant. Biol. 59, 89-113. Doi: 10.1146/annurev.arplant.59.032607.092759
- Bariya, H., S. Bagtharia y A. Patel. 2014. Boron: A promising nutrient for increasing growth and yield of plants. pp. 153-169. En: Hawkesford, M.J., S. Kopriva y L.J. De Kok (eds.). Nutrient use efficiency in plants, concepts and approaches. Springer International Publishing, Cham, Suiza. Doi: 10.1007/978-3-319-10635-9_6
- Blevins, D. y K. Lukaszewski. 1998. Boron in plant structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 481-500.
- Bogiani. J., A, Estevens y C. Rosolem. 2013. Carbohydrate production and transport in cotton cultivars grown under boron deficiency. Sci. Agric. 70(6), 442-448.
- Botta, A., M. Marcon., C. Marín, N. Sierra, M. Carrion y R. Piñol. 2007. Mejora en cuajado y calibre tras la aplicación de Boro con aminoácidos en diferentes cultivos. pp. 592-595. En: Memorias XI Congreso SECH, Albacete, España.
- Broadley, M., P. Brown, I. Cakmak, Z. Rengel y F. Zhao. 2012. Function of nutrients: Micronutrients. pp. 191-248. En: Marschner, P. (ed). Marschner’s mineral nutrition of higher plants. 3rd ed. Elsevier Ltda., Londres.
- Brown, P y B. Shelp. 1997. Boron mobility in plants. Plant Soil 193, 85-101.
- Camacho, J., J. Rexach y A. Gonzales-Fonte. 2008. Boron in plants: Deficiency and toxicity. J. Integ. Plant Biol. 50(10), 1247-1255. Doi: 10.1111/j.1744-7909.2008.00742.x
- Chen, M., S. Mishra, S. Heackathorn, J. Frantz y C. Krause. 2014. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. J. Plant Physiol. 171, 235-242.
- Goldbach, H y M. Wimmer. 2007. Boron in plants and animals: Is there a role beyond cell-wall structure? J. Plant Nutr. Soil Sci. 170(1), 39-48.
- González, S., H. Perales y M. Salcedo. 2008. La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. REB 27(4), 119-129.
- Guidi, L., E. Degl´Innocenti, G. Carmassi, D. Massa y A. Pardossi. 2011. Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water. Environ. Exp. Bot. 73, 57-63. Doi: 10.1016/j.envexpbot.2010.09.017
- Guidon, L., X. Dong, L. Liu, L. Wu, S. Peng y C. Jiang. 2014. Boron deficiency is correlated with changes in cell wall structure that lead to growth defects in the leaves of navel orange plants. Sci. Hortic. 176, 54-62. Doi: 10.1016/j.scienta.2014.06.036
- Han, S., L. Chen, H. Jiang, B. Smith, L. Yang y Y. Xie. 2008. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J. Plant Physiol. 165, 1331-1341. Doi: 10.1016/j.jplph.2007.11.002
- Han, S., N. Tang, H. Jiang, L. Yang, Y. Li y L. Chen. 2009. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci. 176, 143-153. Doi: 10.1016/j.plantsci.2008.10.004
- Herbers, K., P. Meuwly, W. Frommer, J. Métraux y U. Sonnewald. 1996. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8, 793-803. Doi: 10.1105/tpc.8.5.793
- Horn, R., G. Grundmann y H. Paulsen. 2007. Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb). J. Mol. Biol. 366, 1045-1054. Doi: 10.1016/j.jmb.2006.11.069
- Kaya, C. y M. Ashraf. 2015. Exogenous application of nitric oxide promotes growth and oxidative defense system in highly boron stressed tomato plants bearing fruit. Sci. Hortic. 185, 43-47. Doi: 10.1016/j.scienta.2015.01.009
- Kobayashi, M., N. Kouzu, A. Inam., K. Toyooka, Y. Konishi, K. Matsuoka y T. Matoh. 2011. Characterization of Arabidopsis CTP:3-Deoxy-D-manno-2-Octulosonate Cytidylyltransferase (CMP-KDO synthetase), the enzyme that activates KDO during rhamnogalacturonan II biosynthesis. Plant Cell Physiol. 52(10), 1832-1843. Doi: 10.1093/pcp/pcr120
- Krapp, A., B. Hofmann, C. Schafêr y M. Sititt. 1993. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ‘sink regulation’ of photosynthesis?. Plant J. 3(6), 817-828. Doi: 10.1111/j.1365-313X.1993.00817.x
- Landi, M., D. Remorini, A. Pardossi y L. Guidi. 2013a. Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. J. Plant Res. 126, 775-786. Doi: 10.1007/s10265-013-0575-1
- Landi, M., A. Pardossi, D. Remorini y L. Guidi. 2013b. Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environ. Exp. Bot. 85, 64-75. Doi: 0.1016/j.envexpbot.2012.08.008
- Lehto, T., T. Ruuhola y B. Dell. 2010. Boron in forest trees and forest ecosystems. For. Ecol. Manage. 260, 2053-2069. Doi: 10.1016/j.foreco.2010.09.028
- Maxwell, K. y G. Johnson. 2000. Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51(345), 659-668.
- Mishra, S., J. Frantz, F. Yu y J. Gray. 2009. Effects of boron deficiency on geranium grown under different nonphotoinhibitory light levels. J. Amer. Soc. Hort. Sci. 134(2), 183-193. Doi: 10.1007/s11104-011-0888-6
- Miwa, K. y T. Fujiwara. 2010. Boron transport in plants: coordinated regulation of transporters. Ann. Bot. 105, 1103-1108. Doi:10.1093/aob/mcq044
- Mukhopadhyay, M., P. Ghosh y T. Mondal. 2013. Effect of boron deficiency on photosynthesis and antioxidant responses of young tea plantlets. Rus. J. Plant Physiol. 60(5), 633-639. Doi: 10.1134/S1021443713030096
- Ozturk, M., S. Sakcali, S. Gucel y H. Tombuloglu. 2010. Boron and plants. pp. 275-310. En: Ashraf, M. (ed.). Plant adaptation and phytoremediation. Springer Books. Doi: 1007/978-90-481-9370-7_13
- Papadakis, I., K. Dimassi, A. Bosabalidis, I. Therios, A. Patatas y A. Giannakoula. 2004. Effects of B excess on some physiological and anatomical parameters of Navelina orange plants grafted on two rootstocks. Environ. Exp. Bot. 51, 247-257. Doi: 10.1016/j.plantsci.2003.10.027
- Pinho, L., E. Campostrini, P. Monnerat, A. Torres, A. Assis, C. Marciano y Y. Bastos. 2010. Boron deficiency affects gas exchange and photochemical efficiency (JPI test parameters) in green dwarf Coconut. J. Plant Nutr. 33, 439-451. Doi: 10.1080/01904160903470471
- Reid, R., J. Hayes, A. Post, J. Stangoulis y R. Graham. 2004. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 25, 1405-1414.
- Rezaee, F. Ghanati, F. y M. Behmanesh. 2013. Antioxidant activity and expression of catalase gene of Eustoma grandiflorum L. in response to boron and aluminum. South Afr. J. Bot. 84, 13-18. Doi: 10.1016/j.sajb.2012.09.006
- Rolland, F., E. Baena-Gonzalez y J. Sheen. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675-709. Doi: 10.1146/annurev.arplant.57.032905.105441
- Sang, W., Z. Huang, Y. Qi, L. Yang, P. Guo y L. Chen, L. 2015. An investigation of boron – toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics. J. Proteomics 123, 128-146. Doi: 10.1016/j.jprot.2015.04.007
- Sheen, J. 1994. Feedback control of gene expression. Photosynth. Res. 39, 427-438.
- Sheng, O., S. Song, S. Peng y X. Deng. 2009. The effects of low boron on growth, gas exchange, boron concentration and distribution of ‘Newhall’ navel orange (Citrus sinensis Osb.) plants grafted on two rootstocks. Sci. Hortic. 121, 278-283. Doi: 10.1016/j.scienta.2009.02.009
- Singh, D., J. Beloy, J. McInerney y L. Day. 2012. Impact of boron, calcium and genetic factor son vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 132, 1161-1170. Doi: 10.1016/j.foodchem.2011.11.045
- Sinha, V., A. Grover, Z. Ahmed y V. Pande. 2014. Isolation and functional characterization of DNA damage repair protein (DRT) from Lepidium latifolim L. C. R. Biol. 337, 302-310. Doi: 10.1016/j.crvi.2014.03.006
- Sotiropoulos, T., I. Therios, K. Dimmasi, A. Bosabalidis y G. Kofidis. 2002. Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. J. Plant Nutr. 25(6), 1249-1261. Doi: 10.1081/PLN-120004386
- Stangoulis, J., R. Reid, P. Brown y R. Graham. 2001. Kinetic analysis of boron transport in Chara. Planta 213, 142-146.
- Stavrianakou, S., G. Liakopoulos y G. Karabourniotis. 2006. Boron deficiency effects on growth, photosynthesis and relative concentrations of phenolics of Dittrichia viscosa (Asteraceae). Environ. Exp. Bot. 56, 293-300. Doi: 10.1016/j.envexpbot.2005.03.007
- Takano, J., K. Noguchi, M. Yasumori, M. Kobayashi, Z. Gajdos, K. Miwa, H. Hayashi, T. Yoneyama y T. Fujiwara. 2002. Arabidopsis boron transporter for xylem loading. Nature 420(21), 337-340.
- Takano, J., K. Miwa y T. Fujiwara. 2008. Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci. 13(8), 451-457. Doi: 10.1016/j.tplants.2008.05.007
- Tanaka, M. y T. Fujiwara. 2008. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch. Eur. J. Physiol. 456, 671-677. Doi: 10.1007/s00424-007-0370-8
- Turan, M., C. Kayihan, F. Eyidogan, Y. Ekmekci, M. Yucel y H. Oktem.2014. Evaluation of photosynthetic performance of wheat cultivars exposed to boron toxicity by the JIP fluorescence test. Photosynth. 52(4), 555-563. Doi: 10.1007/s.11099-014-0065-2
- Wimmer, M. y T. Eichert. 2013. Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Sci. 203-204, 25-32. Doi: 10.1016/j.plantsci.2012.12.012
- Yusuf, M., Q. Fariduddin y A. Ahmad.2011. 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere 85, 1574-1584. Doi: 10.1016/j.chemosphere.2011.08.004
- Zhao, D. y D. Oosterhuis.2002. Cotton carbon exchange, nonstructural carbohydrates, and boron distribution in tissues during development of boron deficiency. Field Crops Res. 78, 75-87.