Response in root development of Arabidopsis thaliana to leaf extract of Moringa oleifera

Authors

  • Luz Yineth Ortiz-Rojas Universidad Francisco de Paula Santander, Facultad de Ciencias Básicas, Departamento de Química, Laboratorio de Investigación PLANTAE, Cúcuta https://orcid.org/0000-0002-0818-3089
  • Jean Carlos Suárez-Botello Universidad Francisco de Paula Santander, Facultad de Ciencias Básicas, Programa de Tecnología en Química, Cúcuta https://orcid.org/0000-0003-0632-229X
  • Giovanni Chaves-Bedoya Universidad Francisco de Paula Santander, Facultad de Ciencias Básicas, Departamento de Biología, Laboratorio de Investigación PLANTAE, Cúcuta https://orcid.org/0000-0003-1013-614X

DOI:

https://doi.org/10.17584/rcch.2017v11i1.6131

Keywords:

Root architecture, Cytokinin, Primary root, Lateral roots

Abstract

The root growth response is mediated by hormones that participate in all stages of plant growth and development. A good root system guarantees anchoring and absorption of nutrients for the metabolic processes required in the developmental stages. Cytokinins (CK) and auxins (AIA) are hormones that play an important role in the development of the root system. Moringa oleifera has cytokinins, so the application of their extracts can have an effect on the development of the root system. In order to understand the root response to the Moringa oleiferaextract, we used an in vitro system with Arabidopsis thaliana and two experiment conditions. (A) Seeds germinated directly in MS medium with application of the Moringa oleifera extract at different dilutions, which determined how the primary root (PR) growth was affected. (B) Plants were germinated and grown for 8 days in the MS medium, without lateral roots (LR), and transferred to media with different dilutions of the extract. The results showed that (A) the best dilution of Moringa oleifera base extract (KOH 0.05 M) for the germination stimulation was seen in the dilutions of 1 mL, 1.5 mL and 2.0 mL, as well as the treatment with trans Zeathine riboside (ZR) with a concentration of 60 μM, and (B) the basic extract of Moringa oleifera in a ratio of 1.5: 0.5 (extract: KOH 0.05 M) was the best treatment for the development of the primary root (PR) and lateral roots (LR). Further studies are needed to determine the validity of these results in field.

Downloads

Download data is not yet available.

References

Ali, Z., S.M.A. Basra, H. Munir, A. Mahmood y S. Yousaf 2011. Mitigation of drought stress in maize by natural and synthetic growth promoters. J. Agric. Soc. Sci. 7, 56-62.

Aloni, R., M. Langhans, E. Aloni, E. Dreieicher y C.I. Ullrich 2005. Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J. Exp. Bot. 56, 1535-1544. Doi: 10.1093/jxb/eri148

Anjorin, T.S., P. Ikokoh y S. Okolo 2010. Mineral composition of Moringa oleifera leaves, pods and seeds from two regions in Abuja, Nigeria. Int. J. Agric. Biol. 12, 431-434.

Bangerth, F., C. Li y J. Gruber 2000. Mutual interaction of auxin and cytokinins in regulating correlative dominance. Plant Growth Regul. 32, 205-217. Doi: 10.1023/A:1010742721004

Basra, S.M.A., M.N. Iftikhar y I. Afzal 2011. Potential of moringa (Moringa oleifera) leaf extract as priming agent for hybrid maize seeds. Int. J. Agric. Biol. 13, 1006-1010.

Coenen, C. y T.L. Lomax 1997. Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci. 2, 351-356. Doi: 10.1016/S1360-1385(97)84623-7

Dolan, L., K. Janmaat, V. Willemsen, P. Linstead, S. Poethig, K. Roberts y B. Scheres 1993. Cellular organisation of the Arabidopsis thaliana root. Development 119, 71-84.

Gray, W.M. 2004. Hormonal regulation of plant growth and development. PLoS Biol. 2, E311. Doi: 10.1371/journal.pbio.0020311

Himanen, K., E. Boucheron, S. Vanneste, J. de Almeida Engler, D. Inze y T. Beeckman 2002. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339-2351. Doi: 10.1105/tpc.004960

Howell, S.H., S. Lall y P. Che 2003. Cytokinins and shoot development. Trends Plant Sci. 8, 453-459. Doi: 10.1016/S1360-1385(03)00191-2

Miyawaki, K., M. Matsumoto-Kitano y T. Kakimoto. 2004. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37, 128-138. Doi: 10.1046/j.1365-313X.2003.01945.x

Koornneef, M. y D. Meinke 2010. The development of Arabidopsis as a model plant. Plant J. 61, 909-921. Doi: 10.1111/j.1365-313X.2009.04086.x

López-Bucio, J., A. Cruz-Ramírez y L. Herrera-Estrella 2003. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280-287. Doi: 10.1016/S1369-5266(03)00035-9

Murashige, T. y F. Skoog 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. Doi: 10.1111/j.1399-3054.1962.tb08052.x

Nordstrom, A., P. Tarkowski, D. Tarkowska, R. Norbaek, C. Astot, K. Dolezal y G. Sandberg 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin- regulated development. Proc. Natl. Acad. Sci. USA 101, 8039-8044. Doi: 10.1073/pnas.0402504101

Oakenfull, E.A., C. Riou-Khamlichi y J.A. Murray. 2002. Plant D-type cyclins and the control of G1 progression. Philos. Trans. R. Soc. Lond. B Biol Sci. 357, 749- 760. Doi: 10.1098/rstb.2002.1085

Ortiz-Castro, R., M. Martínez-Trujillo, J. López-Bucio, C. Cervantes y Y. Carreón-Abud 2009. Restauración del crecimiento radical por nutrimentos inorgánicos en Arabidopsis thaliana L. expuesta a cromo. Terra Latinoam. 27, 97-103.

Ortiz-Rojas, L.Y. y V.J. Flórez 2008. Comparación cuantitativa de ácido abscísico y citoquininas en la tuberización de Solanum tuberosum L. y Solanum phureja Juz. et Buk. Agron. Colomb. 26, 32-39.

Peret, B., B. De Rybel, I. Casimiro, E. Benkova, R. Swarup, L. Laplaze, T. Beeckman y M.J. Bennett 2009. Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 14, 399-408. Doi: 10.1016/j.tplants.2009.05.002

Rahayu, Y.S., P. Walch-Liu, G. Neumann, V. Römheld, N. Von Wirén y F. Bangerth 2005. Root-derived cytokinins as long-distance signals for NO3 induced stimulation of leaf growth. J Exp. Bot. 56, 1143-1152. Doi: 10.1093/jxb/eri107

Sato, A. y K. Miura 2011. Root architecture remodeling induced by phosphate starvation. Plant Signal Behav. 6, 1122-1126. Doi: 10.4161/psb.6.8.15752

Tanaka, M., K. Takei, M. Kojima, H. Sakakibara y H. Mori 2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 45, 1028- 1036. Doi: 10.1111/j.1365-313X.2006.02656.x

Woodward, A.W. y B. Bartel. 2005. Auxin: regulation, action, and interaction. Ann. Bot. 95, 703-735. Doi: 10.1093/aob/mci083

Published

2017-06-13

How to Cite

Ortiz-Rojas, L. Y., Suárez-Botello, J. C., & Chaves-Bedoya, G. (2017). Response in root development of Arabidopsis thaliana to leaf extract of Moringa oleifera. Revista Colombiana De Ciencias Hortícolas, 11(1), 193–199. https://doi.org/10.17584/rcch.2017v11i1.6131

Issue

Section

Other species section

Metrics

Most read articles by the same author(s)