Potential use of electrochemically synthesized silver nanoparticles on rice panicle blight pathogen, Burkholderia glumae

Uso potencial de nanopartículas de plata sintetizadas electroquímicamente sobre el patógeno del tizón de la panícula del arroz, Burkholderia glumae

Main Article Content

Giovanni Chaves-Bedoya
Hilda Angélica Padilla
Luz Yineth Ortiz-Rojas
Gabriel Peña-Rodríguez


Burkholderia glumae, is the main causal agent of bacterial panicle blight (BPB) in rice (Oriza sativa), a disease that generates production losses worldwide. Despite its economic importance, effective control measures and rice varieties with complete resistance to this disease have not yet been available. In this study, the antimicrobial activity of electrochemically synthesized silver nanoparticles (AgNPs) against B. glumae was evaluated. The AgNPs were synthesized with a DC power supply (UNI-T®) regulated at 24 V, which was connected to two cylindrical electrodes of high purity silver (Aldrich-99.99%) using distilled water as an electrolyte. The AgNPs concentration was determined by measuring the total dissolved solids (TDS) with a HandyLab 680 FK multiparameter. The antibacterial activity of these nanoparticles against B. glumae was determined by the broth macrodilution method at different concentrations (1-10 mg L-1). The minimum inhibitory concentration (MIC) was determined in 5 mg L-1 of AgNPs. The results revealed that AgNPs are a promising nanopesticide for controlling the BPB disease in rice.



Download data is not yet available.

Article Details

References (SEE)

Ahmed, T., Z. Wu, H. Jiang, J. Luo, M. Noman, M. Shahid, I. Manzoor, K. S. Allemailem, F. Alrumaihi, and B. Li. 2021. Bioinspired green synthesis of zinc oxide nanoparticles from a native Bacillus cereus Strain RNT6: characterization and antibacterial activity against rice panicle blight pathogens Burkholderia glumae and B. gladioli. Nanomaterials 11(4), 11040884. Doi: https://doi.org/10.3390/nano11040884

Ali, M.A., T. Ahmed, W. Wu, A. Hossain, R. Hafeez, M. M. Islam Masum, Y. Wang, Q. An, G. Sun, and B. Li. 2020. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10(6), 10061146. Doi: https://doi.org/10.3390/nano10061146

Avila-Quezada, D.G. and G.P. Espino-Solis. 2020. Silver nanoparticles offer effective control of pathogenic bacteria in a wide range of food products. IntechOpen. Doi: https://doi.org/10.5772/intechopen.89403

Banjara, R.A., S.K. Jadhav, and S.A. Bhoite. 2012. MIC for determination of antibacterial activity of Di-2-ethylaniline phosphate. J. Chem. Pharm. Res. 4(1), 648-652.

Cho, H.S., S.Y. Park, C.M. Ryu, J.F. Kim, J.G. Kim, and S.H. Park. 2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol. 60(1), 14-23. Doi: https://doi.org/10.1111/j.1574-6941.2007.00280.x

Dakal, T.C., A. Kumar, R.S. Majumdar, and V. Yadav. 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 7, 1831. Doi: https://doi.org/10.3389/fmicb.2016.01831

Gupta, N., C.P. Upadhyaya, A. Singh, K.A. Abd-Elsalam, and R. Prasad. 2018. Applications of silver nanoparticles in plant protection. pp. 247-265. In: Abd-Elsalam, K.A. and R. Prasad (eds.). Nanobiotechnology applications in plant protection. nanotechnology in the life sciences. Springer, Cham, Switzerland. Doi: https://doi.org/https://doi.org/10.1007/978-3-319-91161-8_9

Hai-Jun, C., W. Hui, and Z. Jing-Ze. 2020. Phytofabrication of silver nanoparticles using three flower extracts and their antibacterial activities against pathogen Ralstonia solanacearum strain yy06 of bacterial wilt. Front. Microbiol. 2110, 1-11. Doi: https://doi.org/https://doi.org/10.3389/fmicb.2020.02110

Khalil, N.M., M.N. Abd El-Ghany, and S. Rodriguez-Couto. 2019. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere 218, 477-486. Doi: https://doi.org/10.1016/j.chemosphere.2018.11.129

Khan, M., A.U. Khan, N. Bogdanchikova, and D. Garibo 2021. Antibacterial and antifungal studies of biosynthesized silver nanoparticles against plant parasitic nematode Meloidogyne incognita, plant pathogens Ralstonia solanacearum and Fusarium oxysporum. Molecules 26(9), 26092462. Doi: https://doi.org/10.3390/molecules26092462

Khaydarov, R.A., R.R. Khaydarov, O. Gapurova, Y. Estrin, and T. Scheper. 2009. Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res. 11(5), 1193-1200. Doi: https://doi.org/https://doi.org/10.1007/s11051-008-9513-x

Kim, S.W., J.H. Jung, K. Lamsal, Y.S. Kim, J.S. Min, and Y.S. Lee. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiol. 40(1), 53-58. Doi: https://doi.org/10.5941/MYCO.2012.40.1.053

Lallo Da Silva, B., M.P. Abuçafy, E. Berbel Manaia, J.A. Oshiro Junior, B.G. Chiari-Andréo, R.C.R. Pietro, and L.A. Chiavacci. 2019. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomed. 14, 9395-9410. Doi: https://doi.org/10.2147/ijn.s216204

Liao, C., Y. Li, and S. Tjong. 2019. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 20(2), 449. Doi: https://doi.org/10.3390/ijms20020449

Loo, Y.Y., Y. Rukayadi, M.-A.-R. Nor-Khaizura, C.H. Kuan, B.W. Chieng, M. Nishibuchi, and S. Radu. 2018. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol. 9, 1555. Doi: https://doi.org/10.3389/fmicb.2018.01555

Losasso, C., S. Belluco, V. Cibin, P. Zavagnin, I. Mičetić, F. Gallocchio, M. Zanella, L. Bregoli, G. Biancotto, and A. Ricci. 2014. Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Front. Microbiol. 5, 227. Doi: https://doi.org/10.3389/fmicb.2014.00227

Maloy, O.C. and A. Baudoin. 2001. Disease control principles. In: Maloy, O.C. and T.D. Murray (eds.). Encyclopedia of plant pathology. Wiley, New York, NY.

Mikhailova, E.O. 2020. Silver nanoparticles: mechanism of action and probable bio-application. J. Funct. Biomater. 11(4), 84. Doi: https://doi.org/10.3390/jfb11040084

Ortega, L. and C.M. Rojas. 2021. Bacterial panicle blight and Burkholderia glumae: from pathogen biology to disease control. Phytopathology 111(5), 772-778. Doi: https://doi.org/10.1094/PHYTO-09-20-0401-RVW

Padilla-Sierra, H.A., G. Peña-Rodriguez, and G. Chaves-Bedoya. 2021. Silver colloidal nanoparticles by electrochemistry: temporal evaluation and surface plasmon resonance. J. Physics: Conf. Ser. 2046, 012064. Doi: https://doi.org/doi:10.1088/1742-6596/2046/1/012064

Pedraza, L.A., J. Bautista, and D. Uribe-Vélez. 2018. Seed-born Burkholderia glumae infects rice seedling and maintains bacterial population during vegetative and reproductive growth stage. Plant Pathol. J. 34(5), 393-402. Doi: https://doi.org/10.5423/ppj.oa.02.2018.0030

Rajeshkumar, S. and C. Malarkodi. 2014. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl. 2014, 581890. Doi: https://doi.org/10.1155/2014/581890

Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671-675. Doi: https://doi.org/10.1038/nmeth.2089

Shanmuganathan, R., D. MubarakAli, D. Prabakar, H. Muthukumar, N. Thajuddin, S.S. Kumar, and A. Pugazhendhi. 2018. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ. Sci. Pollut. Res. Int. 25(11), 10362-10370. Doi: https://doi.org/10.1007/s11356-017-9367-9

Shew, A.M., A. Durand-Morat, v Nalley, X.-G. Zhou, C. Rojas, and G. Thoma. 2019. Warming increases bacterial panicle blight (Burkholderia glumae) occurrences and impacts on USA rice production. Plos ONE 14(7), e0219199. Doi: https://doi.org/10.1371/journal.pone.0219199

Vila Dominguez, A., R. Ayerbe Algaba, A. Miro Canturri, A. Rodriguez Villodres, and Y. Smani. 2020. Antibacterial activity of colloidal silver against gram-negative and gram-positive bacteria. Antibiotics 9(1), 9010036. Doi: https://doi.org/10.3390/antibiotics9010036

Voget, S., A. Knapp, A. Poehlein, C. Vollstedt, W. Streit, R. Daniel, and K.-E. Jaeger. 2015. Complete genome sequence of the lipase producing strain Burkholderia glumae PG1. J. Biotechnol. 204, 3-4. Doi: https://doi.org/10.1016/j.jbiotec.2015.03.022

Vu, X., T. Duong, T. Pham, D. Trinh, X. Nguyen, and V. Dang. 2018. Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus. Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 025019.

Wang, L., C. Hu, and L. Shao. 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227-1249. Doi: https://doi.org/10.2147/ijn.s121956

Xin-Gen, Z. 2019. Sustainable strategies for managing bacterial panicle blight in rice. In: Jia, Y. (ed.). Protecting rice grains in the post-genomic era. IntechOpen. Doi: https://doi.org/https://doi.org/10.5772/intechopen.84882

Zhang, X.-F., Z.-G. Liu, W. Shen, and S. Gurunathan. 2016. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534. Doi: https://doi.org/10.3390/ijms17091534

Zhou-Qi, C., Z. Bo, X. Guan-Lin, L. Bin, and H. Shi-Wen. 2016. Research status and prospect of Burkholderia glumae, the pathogen causing bacterial panicle blight. Rice Sci. 23(3), 111-118. Doi: https://doi.org/10.1016/j.rsci.2016.01.007

Citado por: