Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Crecimiento y producción de fruta en cultivares de fresa (Fragaria sp.) afectados por encharcamiento

Resumen

En general, el exceso de agua tiene un impacto negativo sobre el crecimiento y supervivencia de la mayoría de las plantas terrestres, en especial, cuando el encharcamiento ocurre durante la estación de crecimiento. En un experimento en materas, en invernadero en Tunja/Colombia, se determinó, la producción y distribución de materia seca, el peso específico de las hojas, la relación raíz / parte aérea, el total de fruta cosechada, el área foliar necrótica y normal, el índice de cosecha y el pH del suelo luego del encharcamiento, en tres cultivares de fresa: Chandler, Camarosa y Sweet Charlie. Las plantas se desarrollaron en suelo encharcado y sin encharcar (testigo). Como consecuencia del exceso de agua, el pH del suelo, el peso específico y el área necrótica de las hojas y la relación raíz / parte aérea, se incrementaron; mientras que la fruta cosechada, la producción total de materia seca y el área foliar total se redujeron. El encharcamiento también modificó la distribución de materia seca en los cultivares evaluados siendo el cultivar Chandler el más afectado por el encharcamiento en comparación con los demás cultivares. En general, las plantas de fresa mostraron un comportamiento muy pobre cuando fueron expuestas a condiciones de encharcamiento.

Palabras clave

Estrés, pH del suelo, Distribución de materia seca, Relación raíz / parte aérea, Índice de cosecha, Hipoxia

PDF

Referencias

  • Abbott, J.D. y R.E. Gough. 1987. Reproductive response of the highbush blueberry to root-zone flooding. HortScience 22, 40-42.
  • Abbott, J.D. y R.E. Gough. 1987a. Prolonged flooding effects on anatomy of highbush blueberry. HortScience 22, 622-625.
  • Asohofrucol. 2003. Fresa. En: http://www.frutasyhortalizas.com.co/portal/Business/product_view.php; consulta: mayo 2007.
  • Bailey-Serres, J. y R. Chang. 2005. Sensing and signal- ling in response to oxygen deprivation in plants and other organisms. Ann. Bot. 96, 507 -518.
  • Bergman, H.F. 1943. The relationship of ice and snow cover on winter-flooded cranberry bogs to vine injury from oxygen deficiency. En: Franklin, H.J.; H.F. Bergman y N.E. Stevens (eds.). Weather in cranberry culture. Mass. Agric. Exp. Stn. Bull., Amherst, MA. pp. 1-24.
  • Blanke, M. y D.T. Cooke. 2006. Water channels in straw- berry, and their role in the plant’s response to water stress. Acta Hort. 708, 65-68.
  • Blokhina, O. 2000. Anoxia and oxidative stress: Lipid peroxidation, antioxidant status and mitochondrial functions in plants. Tesis doctoral. Faculty of Science, University of Helsinki. 79 p.
  • Brändle, R. 1996. Überflutung und Sauerstoffmangel. En: Brunold, Ch.; A., Rüegsegger y R. Brändle (eds.). Streß bei Pflanzen. Editorial UTB für Wissenschaft, Stuttgart. pp. 133-148.
  • Crane, J.H. y F.S. Davies. 1985. Responses of rabbiteye blueberries to flooding. Proc. Fla. State Hortic. Soc. 98, 153-155.
  • Crane, J.H. y F.S. Davies. 1985a. Effects of flooding duration and season on rabbiteye blueberry growth and yield. HortScience 50, 529.
  • Crane, J.H. y F.S. Davies. 1989. Flooding responses of Vaccinium species. HortScience 24, 203-210.
  • Casierra-Posada, F. y N. García. 2005. Crecimiento y distribución de materia seca en cultivares de fresa (Fragaria sp.) bajo estrés salino. Agron. Colomb. 23(1), 83-89.
  • Casierra-Posada, F. y J. Poveda. 2005. La toxicidad por exceso de Mn y Zn disminuye la producción de materia seca, los pigmentos foliares y la calidad del fruto en fresa (Fragaria sp. cv. Camarosa). Agron. Colomb. 23(2), 283-289.
  • Dias-Filho, M.B. y C.J.R.D. Carvalho. 2000. Physiological and morphological responses of Brachiaria spp. to flooding. Pesq. Agropec. Bras., Brasília 35(10),1959-1966.
  • Drew, M.C. 1997. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223-250.
  • Fulton, J.M. y A.E. Erickson. 1964. Relation between soil aeration and ethyl alcohol accumulation in xylem exudate of tomatoes. Proc. Soil Sci. Soc. Am. 28, 610-614.
  • Geigenberger P. 2003. Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 6, 247-256.
  • Gibbs, J. y H. Greenway. 2003. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30, 1-37.
  • Greenway, H. y J. Gibbs. 2003. Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct. Plant Biol. 30, 999-1036.
  • Gulen, H. y A. Eris. 2004. Some physiological changes in strawberry (Fragaria x Ananassa ‘Camarosa’) plants under heat stress. J. Hortic. Sci. Biotech. 78(6), 894-898.
  • Gulen, H. y A. Eris. 2004a. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci.166 (3), 739-744.
  • He, Ch.-J.; M.C. Drew y P.W. Morgan. 1994. Plant induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia and nitrogen starvation. Plant Physiol. 105, 861-865.
  • Hook, D.D.; C.L. Brown y P.P. Kormanik. 1971. Inductive flood tolerance in swamp tupelo (Nyssa sylvatica var. biflora (Walt.) Sarg.). J. Exp. Bot. 22, 78-89.
  • Houde, M.; S. Dallaire; D. N’Dong y F. Sarhan. 2004. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol. J. 2(5), 381-387.
  • Hsu, Y.-M.; M.-J. Tseng y Ch.-H. Lin. 1999. The fluctuation of carbohydrates and nitrogen compounds in flooded wax-apple trees. Bot. Bull. Acad. Sin. 40,193-198.
  • Jackson, M.B. 1985. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. 36, 145-174.
  • Joyner, M.E.B. y B. Schaffer. 1989. Flooding tolerance of ‘Golden Star’ carambola trees. Proc. Fla. State Hortic. Soc. 102, 236-239.
  • Kozlowski, T.T. 1984. Responses of woody plants to flooding. En: Kozlowski, T.T. (ed.). Flooding and plant growth. Academic Press, Orlando, FL. pp. 129-163.
  • Kozlowski, T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. Monograph No. 1. 29 p. En: http://www.heronpublishing.com/tp/monograph/kozlowski.pdf; consulta: junio 2007.
  • Kozlowski, T.T.; P.J. Kramer y S.G. Pallardy. 1991. The physiological ecology of woody plants. Academic Press, San Diego, CA. 657 p.
  • Kozlowski, T.T. y S.G., Pallardy. 1996. Growth control in woody plants. Academic Press, San Diego. 641 p.
  • Larcher, W. 2001. Ökophysiologie der Pflanzen. Sexta edición. Editorial Eugen Ulmer, Stuttgart. pp. 324-328.
  • Ledesma, N. y N. Sugiyama. 2005. Pollen Quality and Performance in Strawberry Plants Exposed to High-temperature Stress. J. Amer. Soc. Hort. Sci. 130, 341-347.
  • León, L.A. y O. Arregocés. 1985. Química de los suelos inundados. En: Arroz: Investigación y producción. Tascón, E.E.; D. García (eds.). Guía de Estudio. CIAT, Cali. pp. 287-305.
  • Lin, C.H. y C.H. Lin. 1992. Physiological adaptation of waxapple to waterlogging. Plant Cell Environ. 15, 321-328.
  • Lindeen, L.; P., Palonen y T. Hytonen. 2002. Evaluation of three methods to assess winter hardiness of strawberry genotypes. J. Hortic. Sci. Biotech. 77(5), 580-588.
  • McDonald, S.S. y D.D. Archbold. 1998. Membrane competence among and within Fragaria species varies in response to dehydration stress. J. Amer. Soc. Hort. Sci. 123(5), 808-813.
  • Mustroph, A. y G. Albrecht. 2003. Tolerance of crop plants to oxygen deficiency stress: Fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol. Plant. 117, 508-520.
  • Nestby, R.; R. Bjorgum. 1999. Freeze injury to strawberry plants as evaluated by crown tissue browning, regrowth and yield parameters. Sci. Hort. 81(3), 321-329.
  • Nestby, R.; R. Bjorgum; A. Nes; T. Wikdahl y B. Hageberg. 2001. Reactions of strawberry plants to longterm freezing and alternate freezing and thawing. J. Hortic. Sci. Biotech. 76(3), 280-285.
  • Ponnamperuma, F.N. 1984. Effects of flooding on soils. En: Flooding and plant growth. Kozlowski, T.T. (ed.). Academic Press, Orlando, FL. pp. 9-45.
  • Pomper K.W. y P.J. Breen. 1997. Expansion and osmotic adjustment of strawberry fruit during water stress. J. Amer. Soc. Hort. Sci. 122(2), 183-189.
  • Rajashekar, C.B.; H. Zhou; K.B. Marcum y O. Prakash. 1999. Glycine betaine accumulation and induction of cold tolerance in strawberry (Fragaria x ananassa Duch.) plants. Plant Sci. 148(2), 175-183.
  • Rowe, R.N. y P.B. Catlin. 1971. Differential sensitivity to waterlogging and cyanogenesis by peach, apricot, and plum roots. J. Amer. Soc. Hort. Sci. 96, 305-308.
  • Sahin, U.; S. Ors; S. Ercisli; O. Anapali y A. Esitken. 2005. Effect of pumice amendment on physical soil properties and strawberry plant growth. J. Central European Agr. 6(3), 361-365.
  • Smit, B.; M. Stachowiak y E. Van Volkenburgh. 1989. Cellular processes limiting leaf growth in plants under hypoxic root stress. J. Exp. Bot. 40, 89-94.
  • Taiz, L. y E. Zeiger. 2000. Physiologie der Pflanzen. Editorial Spectrum, Heidelberg. pp. 285-322.
  • Thomas, A.L.; S.M.C. Guerreiro y L. Sodek. 2005. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann. Bot. 96, 1191-1198.
  • Treder, W. y G. Cieslinski. 2005. Effect of silicon application on cadmium uptake and distribution in strawberry plants grown on contaminated soils. J. Plant Nutr. 28(6), 917-929.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

1 2 > >> 

Artículos similares

1 2 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.