Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Cubiertas fotoselectivas y calidad de la luz: impacto en la fisiología de los cultivos y en el manejo integrado de plagas

Growing tomatoes under colorful covers. Photo: A. Hurtado-Salazar

Resumen

La producción agrícola se enfrenta a una serie de retos. Uno de ellos son las condiciones meteorológicas adversas debidas al cambio climático. Este fenómeno altera las condiciones ambientales, incluida la luz, que es un factor clave en la agricultura, ya que afecta directamente a los procesos fisiológicos de las plantas. Es crucial implementar alternativas que optimicen los sistemas de producción para satisfacer la creciente demanda de alimentos. Por ello, esta revisión propone promover la comprensión de cómo los diferentes espectros e intensidades de luz influyen en el crecimiento, desarrollo y rendimiento de los cultivos, así como en la producción de compuestos bioactivos como vitaminas, antioxidantes y fitoquímicos. Esto facilitará el desarrollo de sistemas de cultivo más eficientes y sostenibles. Esta revisión se centra en el uso de películas de plástico fotoselectivas, redes fotoselectivas y películas fotoselectivas en diversos cultivos. En ella se demuestra que el crecimiento y el desarrollo de las plantas están fuertemente influidos por diferentes señales luminosas. La calidad de la luz desempeña un papel crucial en la regulación de estas respuestas. Las películas de plástico fotoselectivas, las redes fotoselectivas y las películas fotoselectivas tienen un impacto significativo en la fisiología de los sistemas de producción. Sin embargo, las plantas responden de forma diferente a la radiación incidente. Por otra parte, la calidad de la luz también aumenta la calidad funcional de los productos agrícolas. Mejora la síntesis de los compuestos orgánicos.

Palabras clave

Cultivos de invernadero, Cubiertas de plástico, Agricultura protegida, Señales luminosas, Efecto de la luz, Radiación

PDF (English)

Citas

  1. Abbasnia, S., S. Sedaghathoor, M.-N. Padasht, and D. Hashemabadi. 2019. The effect of light variations by photoselective shade nets on pigments, antioxidant capacity, and growth of two ornamental plant species: marigold (Calendula officinalis L.) and violet (Viola tricolor). Cogent Food Agric. 5(1), 1650415. Doi: https://doi.org/10.1080/23311932.2019.1650415
  2. Alkalia-Tuvia, S., A. Goren, Y. Perzelan, T. Weinberg, and E. Fallik. 2014. The influence of colored shade nets on pepper quality after harvest--a possible mode-of-action. Agric. For. 60(2), 7-18.
  3. Allakhverdiev, S.I., T. Tomo, Y. Shimada, H. Kindo, R. Nagao, V.V. Klimov, and M. Mimuro. 2010. Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc. Natl. Acad. Sci. USA 107(8), 3924-3929. Doi: https://doi.org/10.1073/pnas.0913460107
  4. Azcón-Bieto, J. and M. Talón. 2008. Fundamentos de fisiología vegetal. 2nd ed. McGraw Hill, Madrid.
  5. Bastías, R.M., L. Manfrini, and L.C. Grappadelli. 2012. Exploring the potential use of photo-selective nets for fruit growth regulation in apple. Chilean J. Agric. Res. 72(2), 224-231. Doi: https://doi.org/10.4067/S0718-58392012000200010
  6. Ben-Yakir, D., Y. Antignus, Y. Offir, and Y. Shahak. 2012. Colored shading nets impede insect invasion and decrease the incidences of insect-transmitted viral diseases in vegetable crops. Entomol. Exp. Appl. 144(3), 249-257. Doi: https://doi.org/10.1111/j.1570-7458.2012.01293.x
  7. Brar, H.S., A. Thakur, H. Singh, and N. Kaur. 2020. Photoselective coverings influence plant growth, root development, and buddability of citrus plants in protected nursery. Acta Physiol. Plant. 42, 18. Doi: https://doi.org/10.1007/s11738-019-2998-3
  8. Brini, F., K. Mseddi, M. Brestic, and M. Landi. 2022. Hormone-mediated plant responses to light quality and quantity. Env. Exp. Bot. 202, 105026. Doi: https://doi.org/10.1016/j.envexpbot.2022.105026
  9. Brinkert, K., S. De Causmaecker, A. Krieger-Liszkay, A. Fantuzzi, and W. Rutherford. 2016. Bicarbonate-induced redox tuning in photosystem II for regulation and protection. Proc. Natl. Acad. Sci. USA 113(43), 12144-12149. Doi: https://doi.org/10.1073/pnas.1608862113
  10. Buthelezi, M.N.D., P. Soundy, J. Jifon, and D. Sivakumar. 2016. Spectral quality of photo-selective nets improves phytochemicals and aroma volatiles in coriander leaves (Coriandrum sativum L.) after postharvest storage. J. Photochem. Photobiol. B: Biol. 161, 328-334. Doi: https://doi.org/10.1016/j.jphotobiol.2016.05.032
  11. Cardona, T., S. Shao, and P.J. Nixon. 2018. Enhancing photosynthesis in plants: the light reactions. Essays Biochem. 62(1), 85-94. Doi: https://doi.org/10.1042/EBC20170015
  12. Casal, C., C. Vílchez, E. Forján, and B.A. de La Morena. 2009. The absence of UV-radiation delays the strawberry ripening but increases the final productivity, not altering the main fruit nutritional properties. Acta Hortic. 842, 159-162. Doi: https://doi.org/10.17660/ActaHortic.2009.842.19
  13. Casierra-Posada, F., Y.A. Matallana-Díaz, and E. Zapata-Casierra. 2014c. Growth of bell pepper plants (Capsicum annuum) affected by coloured covers. Gesunde Pflanzen 66, 149-155. Doi: https://doi.org/10.1007/s10343-014-0328-7
  14. Casierra-Posada, F., P. Nieto, and C. Ulrichs. 2012a. Crecimiento, producción y calidad de flores en calas (Zantedeschia aethiopica (L.) K. Spreng) expuestas a diferente calidad de luz. Rev. UDCA Act. Div. Cient. 15(1), 97-105. Doi: https://doi.org/10.31910/rudca.v15.n1.2012.806
  15. Casierra-Posada, F. and J.E. Peña-Olmos. 2015. Modificaciones fotomorfogénicas inducidas por la calidad de la luz en plantas cultivadas. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 39(276), 84-92. Doi: https://doi.org/10.18257/raccefyn.276
  16. Casierra-Posada, F., J.E. Peña-Olmos, and A.F. Vargas-Martínez. 2011. Propiedades fisicoquímicas de fresas (Fragaria sp) cultivadas bajo filtros fotoselectivos. Rev. Fac. Nal. Agron. Medellín 64(2), 6221-6228.
  17. Casierra-Posada, F., J.E. Peña-Olmos, and C. Ulrichs. 2012b. Basic growth analysis in strawberry plants (Fragaria sp.) exposed to different radiation environments. Agron. Colomb. 30(1), 25-33.
  18. Casierra-Posada, F., J.E. Peña-Olmos, and E. Zapata-Casierra. 2014a. Pigment content in strawberry leaves (Fragaria sp.) exposed to different light quality. Rev. UDCA Act. Div. Cient. 17(1), 87-94. Doi: https://doi.org/10.31910/rudca.v17.n1.2014.943
  19. Casierra-Posada, F. and J.R. Pinto-Correa. 2011. Crecimiento de plantas de remolacha (Beta vulgaris L. var. Crosby Egipcia) bajo coberturas de color. Rev. Fac. Nal. Agron. Medellin 64(2), 6081-6091.
  20. Casierra-Posada, F., and J. Rojas. 2009. Efecto de la exposición del semillero a coberturas de colores sobre el desarrollo y productividad del brócoli (Brassica oleracea var. italica). Agron. Colomb. 27(1), 49-55.
  21. Casierra-Posada, F., E. Zapata-Casierra, and D.A. Chaparro-Chaparro. 2014b. Growth analysis in chard plants (Beta vulgaris L. Cicla, cv. Pencas Blancas) exposed to different light quality. Agron. Colomb. 32(2), 205-212. Doi: https://doi.org/10.15446/agron.colomb.v32n2.42640
  22. Castellano, S., G.S. Mugnozza, G. Russo, D. Briassoulis, A. Mistriotis, S. Hemming, and D. Waaijenberg. 2008. Plastic nets in agriculture: a general review of types and applications. Appl. Eng. Agric. 24(6), 799-808. Doi: https://doi.org/10.13031/2013.25368
  23. Castilla, N. 2003. Estructuras y equipamientos de invernaderos. pp. 1-11. In: Castellanos, J.Z. and J.J. Muñoz (eds.). Memoria del Curso Internacional de Producción de Hortalizas en Invernadero. INIFAP, México DF.
  24. Ceballos-Aguirre, N., A. Hurtado-Salazar, G.M. Restrepo, O.J. Sánchez, M.C. Hernández, and M. Montoya. 2024. Technical and economic assessment of tomato cultivation through a macro-tunnel production system with the application of Gluconacetobacter diazotrophicus. Horticulturae 10(10), 1110. Doi: https://doi.org/10.3390/horticulturae10101110
  25. Chyzik, R., S. Dobrinin, and Y. Antignus. 2003. Effect of a UV-deficient environment on the biology and flight activity of Myzus persicae and its hymenopterous parasite Aphidius matricariae. Phytoparasitica 31(5), 467-477. Doi: https://doi.org/10.1007/BF02979740
  26. Cramer, M.E., K. Demchak, R. Marini, and T. Leskey. 2019. UV-blocking high-tunnel plastics reduce Japanese beetle (Popillia japonica) in red raspberry. HortScience 54(5), 903-909. Doi: https://doi.org/10.21273/HORTSCI13820-18
  27. Doukas, D. and C.C. Payne. 2007. The use of ultraviolet-blocking films in insect pest management in the UK; effects on naturally occurring arthropod pest and natural enemy populations in a protected cucumber crop. Ann. Appl. Biol. 151(2), 221-231. Doi: https://doi.org/10.1111/j.1744-7348.2007.00169.x
  28. Facella, P., L. Daddiego, G. Giuliano, and G. Perrotta. 2012. Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato. Plos ONE 7(1), e30121. Doi: https://doi.org/10.1371/journal.pone.0030121
  29. Fletcher, J.M., A. Tatsiopoulou, P. Hadley, F.J. Davis, and R.G.C. Henbest. 2004. Growth, yield and development of strawberry cv. ‘Elsanta’ under novel photoselective film clad greenhouses. Acta Hort. 633, 99-106. Doi: https://doi.org/10.17660/ActaHortic.2004.633.11
  30. Flórez-Hernández, E.A., E. Montes-Ciro, A. Hurtado-Salazar, J.C. Aristizábal, and N. Ceballos-Aguirre. 2023. Technical-economic evaluation of bacterial consortia in strawberry cultivation across two production systems. Rev. Colomb. Cienc. Hortic. 17(3), e16506. Doi: https://doi.org/10.17584/rcch.2023v17i3.16506
  31. Folta, K.M. and S.D. Carvalho. 2015. Photoreceptors and control of horticultural plant traits. HortScience 50(9), 1274-1280. Doi: https://doi.org/10.21273/HORTSCI.50.9.1274
  32. Francescangeli, N., M.A. Sangiacomo, and H.R. Martí. 2007. Vegetative and reproductive plasticity of broccoli at three levels of incident photosynthetically active radiation. Span. J. Agric. Res. 5(3), 389-401. Doi: https://doi.org/10.5424/sjar/2007053-258
  33. Galvāo, V.C., A.-S. Fiorucci, M. Trevisan, J.M. Franco-Zorilla, A. Goyal, E. Schmid-Siegert, R. Solano, and C. Fankhauser. 2019. PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. Nat. Commun. 10, 4005. Doi: https://doi.org/10.1038/s41467-019-11882-7
  34. Gong, J., Z. Wang, Z. Guo, L. Yao, C. Zhao, S. Lin, S. Ma, and Y. Shen. 2023. DORN1 and GORK regulate stomatal closure in Arabidopsis mediated by volatile organic compound ethyl vinyl ketone. Int. J. Biol. Macromol. 231, 123503. Doi: https://doi.org/10.1016/j.ijbiomac.2023.123503
  35. González, A., R. Rodríguez, S. Bañón, J.A. Franco, and J.A. Fernández. 2001. The influence of photoselective plastic films as greenhouse cover on sweet pepper yield and on insect pest levels. Acta Hortic. 559, 233-238. Doi: https://doi.org/10.17660/ActaHortic.2001.559.34
  36. González, A., R. Rodríguez, S. Bañón, J.A. Franco, J.A. Fernández, A. Salmerón, and E. Espí. 2003. Strawberry and cucumber cultivation under fluorescent photoselective plastic films cover. Acta Hortic. 614, 407-413. Doi: https://doi.org/10.17660/ActaHortic.2003.614
  37. Goren, A., S. Alkalai-Tuvia, Y. Perzelan, Z. Aharon, and E. Fallik. 2011. Photoselective shade nets reduce postharvest decay development in pepper fruits. Adv. Hort. Sci. 25(1), 26-31.
  38. Harish, B.S., K. Umesha, R. Venugopalan, and B.N. Maruthi Prasad. 2022. Photo-selective nets influence physiology, growth, yield and quality of turmeric (Curcuma longa L.). Ind. Crops Prod. 186, 115202. Doi: https://doi.org/10.1016/j.indcrop.2022.115202
  39. Hemming, S., E. Van Os, J. Hemming, and J. Dieleman. 2006. The effect of new developed fluorescent greenhouse films on the growth of Fragaria x ananassa ‘Elsanta’. Europ. J. Hort. Sci. 71(4), 1145-154.
  40. Ilić, Z.S. and E. Fallik. 2017. Light quality manipulation improves vegetable quality at harvest and postharvest: a review. Environ. Exp. Bot. 139, 79-90. Doi: https://doi.org/10.1016/j.envexpbot.2017.04.006
  41. Ilić, S.Z., L. Milenković, A. Dimitrijević, L. Stanojević, D. Cvetković, Ž. Kevrešan, E. Fallik, and J. Mastilović. 2017. Light modification by color nets improve quality of lettuce from summer production. Sci. Hortic. 226, 389-397. Doi: https://doi.org/10.1016/j.scienta.2017.09.009
  42. Ilić, Z.S., L. Milenković, L. Stanojević, D. Cvetković, and E. Fallik. 2012. Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Sci. Hortic. 139, 90-95. Doi: https://doi.org/10.1016/j.scienta.2012.03.009
  43. Kami, C., S. Lorrain, P. Hornitschek, and C. Fankhauser. 2010. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 91, 29-66. Doi: https://doi.org/10.1016/S0070-2153(10)91002-8
  44. Katna, S., A. Kumar, T. Banshtu, N. Devi, S. Singh, and S. Sharma. 2024. LC/TQ mass spectrometry analysis for estimation of residual behavior and dissipation kinetics of isocycloseram and its metabolite’s in/on tomato (Solanum lycopersicum). J. Food Compos. Anal. 133, 106377. Doi: https://doi.org/10.1016/j.jfca.2024.106377
  45. Khandaker, L., A.S.M.G. Masum Akond, Md.B. Ali, and S. Oba. 2010. Biomass yield and accumulations of bioactive compounds in red amaranth (Amaranthus tricolor L.) grown under different colored shade polyethylene in spring season. Sci. Hortic. 123(3), 289-294. Doi: https://doi.org/10.1016/j.scienta.2009.09.012
  46. Khattak, A.M., S. Pearson, and C.B. Johnson. 2004. The effects of far red spectral filters and plant density on the growth and development of chrysanthemums. Sci. Hortic. 102(3), 335-341. Doi: https://doi.org/10.1016/j.scienta.2004.05.001
  47. Kittas, C., M. Tchamitchian, N. Katsoulas, P. Karaiskou, and C. Papaioannou. 2006. Effect of two UV-absorbing greenhouse-covering films on growth and yield of an eggplant soilless crop. Sci. Hortic. 110(1), 30-37. Doi: https://doi.org/10.1016/j.scienta.2006.06.018
  48. Kong, Y., L. Avraham, Y. Perzelan, S. Alkalai-Tuvia, K. Ratner, Y. Shahak, and E. Fallik. 2013. Pearl netting affects postharvest fruit quality in ‘Vergasa’ sweet pepper via light environment manipulation. Sci. Hortic. 150, 290-298. Doi: https://doi.org/10.1016/j.scienta.2012.11.029
  49. Kumar, P. and H.-M. Poehling. 2006. UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environ. Entomol. 35(4), 1069-1082. Doi: https://doi.org/10.1603/0046-225X-35.4.1069
  50. Lambers, H., F.S. Chapin, and T.L. Pons. 1998. Plant physiological ecology. Sprinber, New York, YN. Doi: https://doi.org/10.1007/978-1-4757-2855-2
  51. Landi, M., M. Zivcak, O. Sytar, M. Brestic, and S.I. Allakhverdiev. 2020. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: a review. Biochim. Biophys. Acta Bioenerg. 1861, 148131. Doi: https://doi.org/10.1016/j.bbabio.2019.148131
  52. Li, S., N.C. Rajapakse, R.E. Young, and R. Oi. 2000. Growth responses of chrysanthemum and bell pepper transplants to photoselective plastic films. Sci. Hortic. 84(3-4), 215-225. Doi: https://doi.org/10.1016/S0304-4238(99)00136-3
  53. Magnani, G., F. Filippi, E. Borghesi, and M. Vitale. 2008. Impact of sunlight spectrum modification on yield and quality of ready-to-use lettuce and rocket salad grown on floating system. Acta Hortic. 801, 163-169. Doi: https://doi.org/10.17660/ActaHortic.2008.801.13
  54. Mamedov, M., Govindjee, V. Nadtochenko, and A. Semenov. 2015. Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth. Res. 125, 51-63. Doi: https://doi.org/10.1007/s11120-015-0088-y
  55. Marcus, R.A. and N. Sutin. 1985. Electron transfers in chemistry and biology. Biochim. Biophys. Acta - Rev. Bioenerg. 811(3), 265-322. Doi: https://doi.org/10.1016/0304-4173(85)90014-X
  56. Martins, J.R., A.A. Alvarenga, E.M. Castro, J.E.B.P. Pinto, and A.P.O. Silva. 2008. Avaliação do crescimento e do teor de óleo essencial em plantas de Ocimum gratissimum L. cultivadas sob malhas coloridas. Rev. Bras. Pl. Med. 10(4), 102-107.
  57. Mascarini, L., G.A. Lorenzo, and M.L. Burgos. 2013. Fotocontrol de la productividad y elongación de tallos de tres cultivares de Rosa x hybrida L. bajo cubiertas de polietileno fotoselectivas. Rev. Fca. Cienc. Agrar. 45(1), 11-25.
  58. Mashabela, M.N., K.M. Selahle, P. Soundy, K.M. Crosby, and D. Sivakumar. 2015. Bioactive compounds and fruit quality of green sweet pepper grown under different colored shade netting during postharvest storage. J. Food Sci. 80(11), 2612-2618. Doi: https://doi.org/10.1111/1750-3841.13103
  59. Meyer, P., B. Van de Poel, and B. De Coninck. 2021. UV-B light and its application potential to reduce disease and pest incidence in crops. Hortic. Res. 8, 194. Doi: https://doi.org/10.1038/s41438-021-00629-5
  60. Milenković, L., J. Stanojević, D. Cvetković, L. Stanojević, D. Lalević, L. Šunić, E. Fallik, and Z.S. Ilić. 2019. New technology in basil production with high essential oil yield and quality. Ind. Crops Prod. 140, 111718. Doi: https://doi.org/10.1016/j.indcrop.2019.111718
  61. Miresmailli, S. and M.B. Isman. 2014. Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci. 19(1), 29-35. Doi: https://doi.org/10.1016/j.tplants.2013.10.002
  62. Murakami, K., H. Cui, M. Kiyota, I. Aiga, and T. Yamane. 1997. Control of plant growth by covering materials for greenhouses which alter the spectral distribution of transmitted light. Acta Hortic. 435, 123-130. Doi: https://doi.org/10.17660/ActaHortic.1997.435.11
  63. Murchie, E.H. and T. Lawson. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983-3998. Doi: https://doi.org/10.1093/jxb/ert208
  64. Nguy-Robertson, A., A. Suyker, and X. Xiao. 2015. Modeling gross primary production of maize and soybean croplands using light quality, temperature, water stress, and phenology. Agric. For. Meteorol. 213, 160-172. Doi: https://doi.org/10.1016/j.agrformet.2015.04.008
  65. Oliveira, G.C., W.L. Vieira, S.C. Bertolli, and A.C. Pacheco. 2016. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets. Chilean J. Agric. Res. 76(1), 123-128. Doi: https://doi.org/10.4067/S0718-58392016000100017
  66. Oren-Shamir, M., E. Gussakovsky, E. Eugene, A. Nissim-Levi, K. Ratner, R. Ovadia, Y. Giller, and Y. Shahak. 2001. Coloured shade nets can improve the yield and quality of green decorative branches of Pittosporum variegatum. J. Hort. Sci. Biotechnol. 76(3), 353-361. Doi: https://doi.org/10.1080/14620316.2001.11511377
  67. Ovadia, R., I. Dori, A. Nissim-Levi, Y. Shahak, and M. Oren-Shamir. 2009. Coloured shade-nets influence stem length, time to flower, flower number and inflorescence diameter in four ornamental cut-flower crops. J. Hortic. Sci. Biotechnol. 84(2), 161-166. Doi: https://doi.org/10.1080/14620316.2009.11512498
  68. Oyaert, E., E. Volckaert, and P. Debergh. 1999. Growth of chrysanthemum under coloured plastic films with different light qualities and quantities. Sci. Hortic. 79(3), 195-205. Doi: https://doi.org/10.1016/S0304-4238(98)00207-6
  69. Pallotti, L., O. Silvestroni, E. Dottori, T. Lattanzi, and V. Lanari. 2023. Effects of shading nets as a form of adaptation to climate change on grapes production: a review. OENO One 57(2), 467-476. Doi: https://doi.org/10.20870/oeno-one.2023.57.2.7414
  70. Pandey, G., S. Parks, and R.G. Thomas. 2023. Polymer and photo-selective covers on plant and fruit development: a review. Agron. J. 115(6), 3074-3091. Doi: https://doi.org/10.1002/agj2.21442
  71. Perilla, A., L.F. Rodríguez, and L.T. Bermúdez. 2011. Economic and technical study of tomato production system under greenhouse conditions in Guateque, Sutatenza and Tenza (Boyaca). Rev. Colomb. Cienc. Hortic. 5(2), 220-232. Doi: https://doi.org/10.17584/rcch.2011v5i2.1269
  72. Pizzo, J., T. Rutz, A.S. Ojeda, K.Y. Kartowikromo, A.M. Hamid, A. Simmons, A.L.B.R. da Silva, and C. Rodrigues. 2024. Quantifying terpenes in tomato leaf extracts from different species using gas chromatography-mass spectrometry (GC-MS). Anal. Biochem. 689, 115503. Doi: https://doi.org/10.1016/j.ab.2024.115503
  73. Pribil, M., M. Labs, and D. Leister. 2014. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 65(8), 1955-1972. Doi: https://doi.org/10.1093/jxb/eru090
  74. Rajapakse, N.C., R.E. Young, M.J. McMahon, and R. Oi. 1999. Plant height control by photoselective filters: current status and future prospects. Horttechnology 9(4), 618-624. Doi: https://doi.org/10.21273/HORTTECH.9.4.618
  75. Sakamoto, K. and W.R. Briggs. 2002. Cellular and subcellular localization of phototropin 1. Plant Cell 14(8), 1723-1735. Doi: https://doi.org/10.1105/tpc.003293
  76. Schmitt, J., S.A. Dudley, and M. Pigliucci. 1999. Manipulative approaches to testing adaptive plasticity: phytochrome-mediated shade-avoidance responses in plants. Am. Nat. 154(S1), 43-54. Doi: https://doi.org/10.1086/303282
  77. Selahle, K.M., D. Sivakumar, J. Jifon, and P. Soundy. 2015. Postharvest responses of red and yellow sweet peppers grown under photo-selective nets. Food Chem. 173, 951-956. Doi: https://doi.org/10.1016/j.foodchem.2014.10.034
  78. Shahak, Y. 2014. Photoselective netting: an overview of the concept, research and development and practical implementation in agriculture. Acta Hortic 1015, 155-162. Doi: https://doi.org/10.17660/ActaHortic.2014.1015.17
  79. Shahak, Y., E. Gal, Y. Offir, and D. Ben-Yakir. 2008. Photoselective shade netting integrated with greenhouse technologies for improved performance of vegetable and ornamental crops. Acta Hortic. 797, 75-80. Doi: https://doi.org/10.17660/ActaHortic.2008.797.8
  80. Shahak, Y., E.E. Gussakovsky, Y. Cohen, S. Lurie, R. Stern, S. Kfir, A. Naor, I. Atzmon, I. Doron, and Y. Greenblat-Avron. 2004. ColorNets: a new approach for light manipulation in fruit trees. Acta Hortic. 636, 609-616. Doi: https://doi.org/10.17660/ACTAHORTIC.2004.636.76
  81. Shahak, Y., Y. Kong, and K. Ratner. 2016. The wonders of yellow netting. Acta Hortic 1134, 327-334. Doi: https://doi.org/10.17660/ActaHortic.2016.1134.43
  82. Shahak, Y., K. Ratner, N. Zur, Y. Offir, E. Matan, H. Yehezkel, Y. Messika, I. Posalski, and D. Ben-Yakir. 2009. Photoselective netting: an emerging approach in protected agriculture. Acta Hortic. 807, 79-84. Doi: https://doi.org/10.17660/ActaHortic.2009.807.7
  83. Shimoda, M. and K.-I Honda. 2013. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 48, 413-421. Doi: https://doi.org/10.1007/s13355-013-0219-x
  84. Stagnari, F., C. Di Mattia, A. Galieni, V. Santarelli, S. D’Egidio, G. Pagnani, and M. Pisante. 2018. Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil. Ind. Crops Prod. 122, 277-289. Doi: https://doi.org/10.1016/j.indcrop.2018.05.073
  85. Stirbet, A. and Govindjee. 2012. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth. Res. 113. 15-61. Doi: https://doi.org/10.1007/s11120-012-9754-5
  86. Takagi, D., S. Takumi, M. Hashiguchi, T. Sejima, and C. Miyake. 2016. Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiol. 171(3), 1626-1634. Doi: https://doi.org/10.1104/pp.16.00246
  87. Tezuka, T., T. Hotta, and I. Watanabe. 1993. Growth promotion of tomato and radish plants by solar UV radiation reaching the Earth’s surface. J. Photochem. Photobiol. B: Biol. 19(1), 61-66. Doi: https://doi.org/10.1016/1011-1344(93)80094-P
  88. Tinyane, P.P., D. Sivakumar, and P. Soundy. 2013. Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Sci. Hortic. 161, 340-349. Doi: https://doi.org/10.1016/j.scienta.2013.06.024
  89. Tinyane, P.P., P. Soundy, and D. Sivakumar. 2018. Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Sci. Hortic. 230, 43-49. Doi: https://doi.org/10.1016/j.scienta.2017.11.020
  90. Tóth, R., E. Kevei, A. Hall, A.J. Millar, F. Nagy, and L. Kozma-Bognár. 2001. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 127(4), 1607-1616. Doi: https://doi.org/10.1104/pp.010467
  91. Vakalounakis, D.J. 1991. Control of early blight of greenhouse tomato, caused by Alternaria solani, by inhibiting sporulation with ultraviolet-absorbing vinyl film. Plant Dis. 75(8), 795-797. Doi: https://doi.org/10.1094/PD-75-0795
  92. Van Haeringen, C.J., J.S. West, F.J. Davis, A. Gilbert, P. Hadley, S. Pearson, A.E. Wheldon and R.G.C. Henbest. C. 2008. The development of solid spectral filters for the regulation of plant growth. Photochem. Photobiol. 67(4), 407-413. Doi: https://doi.org/10.1111/j.1751-1097.1998.tb05219.x
  93. Vass, I. 2012. Molecular mechanisms of photodamage in the photosystem II complex. Biochim. Biophys. Acta – Bioenerg. 1817(2), 209-217. Doi: https://doi.org/10.1016/j.bbabio.2011.04.014
  94. Velez-Ramirez, A.I., W. Van Ieperen, D. Vreugdenhil, and F.F. Millenaar. 2011. Plants under continuous light. Trends Plant Sci. 16(6), 310-318. Doi: https://doi.org/10.1016/j.tplants.2011.02.003
  95. Walters, R.G. 2005. Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 56 (411), 435-447. Doi: https://doi.org/10.1093/jxb/eri060
  96. Wang, P., M.A. Abid, G. Qanmber, M. Askari, L. Zhou, Y. Song, C. Liang, Z. Meng, W. Malik, Y. Wei, Y. Wang, H. Cheng, and R. Zhang. 2022. Photomorphogenesis in plants: the central role of phytochrome interacting factors (PIFs). Env. Exp. Bot. 194, 104704. Doi: https://doi.org/10.1016/j.envexpbot.2021.104704
  97. Wilson, S.B. and N.C. Rajapakse. 2001b. Growth control of lisianthus by photoselective plastic films. HortTechnology 11(4), 581-584. Doi: https://doi.org/10.21273/HORTTECH.11.4.581
  98. Wilson, S.B. and N.C. Rajapakse. 2001a. Growth regulation of sub-tropical perennials by photoselective plastic films. J. Environ. Hortic. 19(2), 65-68. Doi: https://doi.org/10.24266/0738-2898-19.2.65
  99. Wydrzynski, T.J., K. Satoh, and J.A. Freeman (eds.). 2005. Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, The Netherlands. Doi: https://doi.org/10.1007/1-4020-4254-X
  100. Yáñez, M.J., M.A. Rodríguez, S. Musleh, G. Silva, and E. Lucas. 2021. Photo-selective nets (PSNs) affect predation by Harmonia axyridis on Myzus persicae. Biol. Control 164, 104780. Doi: https://doi.org/10.1016/j.biocontrol.2021.104780
  101. Yang, F., S. Huang, R. Gao, W. Liu, T. Yong, X. Wang, X. Wu, and W. Yang. 2014. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crop Res. 155, 245-253. Doi: https://doi.org/10.1016/j.fcr.2013.08.011
  102. Yang, Z., Z. Zhang, T. Zhang, S. Fahad, K. Cui, L. Nie, S. Peng, and J. Huang. 2017. The effect of season-long temperature increases on rice cultivars grown in the Central and Southern regions of China. Front. Plant Sci. 8, 1908. Doi: https://doi.org/10.3389/fpls.2017.01908
  103. Zakher, A.G. and M.A.A. Abdrabbo. 2014. Reduce the harmful effect of high temperature to improve the productivity of tomato under conditions of newly reclaimed land. Egypt. J. Hort. 41(2), 151-167. Doi: https://doi.org/10.21608/ejoh.2014.1360

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

1 2 > >> 

Artículos similares

<< < 1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.