Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Algunas aplicaciones de medidas difusas con la teoría de codificación

Resumen

Resumen: Se ha visto que las medidas difusas participan en el desarrollo de varios métodos para la creación de longitudes de codecs difusas medias. Este enfoque es el que adopta la presente comunicación, que proporciona la aplicación de medidas difusas de entropía para la creación de nuevas longitudes difusas de codecs. Además, queremos aportar más luz sobre los problemas de correspondencia entre la media ponderada y la posible entropía difusa ponderada utilizando medidas difusas.

Códigos JEL: C890

Recibido: 22/07/2024. Aceptado: 02/10/2024. Publicado: 03/03/2025.

Palabras clave

Entropía difusa, longitud media difusa de la palabra clave, media ponderada, función monótona

PDF (English)

Citas

  1. Belis, M. & Guiasu, S. (1968). A quantitative qualitative measure of information in cybernetic systems. IEEE Transactions on Information Theory, 14, 593-594. DOI: https://doi.org/10.1109/TIT.1968.1054185
  2. Campbell, L.L. (1965). A coding theorem and Renyi's entropy. Information and control, 8: 423-429. DOI: https://doi.org/10.1016/S0019-9958(65)90332-3
  3. Frumin, L. L., Gelash, A. A. & Turitsyn, S. K. (2017). New approaches to coding information using inverse scattering transform. Phys. Rev. Lett., 118(22), 5 pp. DOI: https://doi.org/10.1103/PhysRevLett.118.223901
  4. Germe M.M., Demamu J. and Alaba B.A. (2023). Updates on Properties of Hamming Distance of Binary Fuzzy Codes Over Fuzzy Vector Spaces and Their Application in Decoding Process. Fuzzy Information and Engineering, 15 (4), 335-346 DOI: https://doi.org/10.26599/FIE.2023.9270024
  5. Germe M.M., Demamu J. and Alaba B.A. (2023). Binary Fuzzy Codes and Some Properties of Hamming Distance of Fuzzy Codes. 15, 26-35 DOI: https://doi.org/10.26599/FIE.2023.9270003
  6. Guiasu, S. & Picard, C.F. (1971). Borne in ferictur dela longuerur utile de certains codes. Comptes Rendus Mathematique Academic des Sciences Paris, 273, 248-251.
  7. Gupta R. and Kumar S. (2022). A new generalization of Renyi’s entropy of order β with coding theory in fuzzy environment. AIP Conference Proceedings 2555(1):040003 DOI: https://doi.org/10.1063/5.0108754
  8. Gurdial & Pessoa, F. (1977). On useful information of order a. Journal of Combinatorics Information and System Sciences, 2, 158-162.
  9. Hayashi, M. (2019). Universal channel coding for general output alphabet. IEEE Trans. Inform. Theory, 65 (1), 302–321. DOI: https://doi.org/10.1109/TIT.2018.2877456
  10. Joshi, R. & Kumar, S. (2018). A new weighted (α, β)-norm information measure with application in coding theory. Physica A: Statistical Mechanics and its Applications, 510(C), 538-551. DOI: https://doi.org/10.1016/j.physa.2018.07.015
  11. Kapur, J.N. (1967). Generalized entropy of order a and type b. Mathematics Seminar, 4, 79-84.
  12. Kapur, J.N. (1986). Four families of measures of entropy. Indian Journal of Pure and Applied Mathematics, 17, 429-449.
  13. Kapur, J.N. (1994). Measures of Information and their Applications. Wiley Eastern, New York.
  14. Kapur, J.N. (1998). Entropy and Coding. Mathematical Sciences Trust Society, New Delhi.
  15. Kawan, C. & Yüksel, S. (2018). On optimal coding of non-linear dynamical systems. IEEE Trans. Inform. Theory, 64(10), 6816–6829. DOI: https://doi.org/10.1109/TIT.2018.2844211
  16. Kraft, L.G. (1949). A Device for Quantizing Grouping and Coding Amplitude Modulated Pulses. M.S. Thesis, Electrical Engineering Department, MIT.
  17. Lee, Si-Hyeon & Chung, Sae-Young (2018). A unified random coding bound. IEEE Trans. Inform. Theory,64 (10), 6779–6802. DOI: https://doi.org/10.1109/TIT.2018.2864731
  18. Ouahada, K., & Ferreira, H.C. (2019). New Distance Concept and Graph Theory Approach for Certain Coding Techniques Design and Analysis. Communications in Applied and Industrial Mathematics, 10(1), 53-70. DOI: https://doi.org/10.1515/caim-2019-0012
  19. Renyi, A. (1961). On measures of entropy and information. Proceedings 4th Berkeley Symposium on Mathematical Statistics and Probability, 1, 547-561.
  20. Saraswat R. N. & Umar A. (2021). “Some New coding Information Inequalities” in the book title “Intelligent System Algorithms and Applications in Science and Technology”. Apple Academic Press, Taylor-Francis Group Chapter 22, ISBN 9781774630211 DOI: https://doi.org/10.1201/9781003187059-27
  21. Singh S. and Sharma S. (2019). On Generalized Fuzzy Entropy and Fuzzy Divergence Measure with Applications. International Journal of Fuzzy System Applications, 8(3) DOI: https://doi.org/10.4018/IJFSA.2019070102
  22. Umar A. & Saraswat R.N. (2022). Decision-Making in Machine Learning Using Novel Picture Fuzzy Divergence Measure. Neural Computing and Applications, 34(1), pp. 457–475. DOI: 10.2174/2666255813666200224093221. DOI: https://doi.org/10.1007/s00521-021-06353-4
  23. Umar A. & Saraswat R.N. (2024). Decision making using novel Fermatean fuzzy divergence measure and weighted aggregation operators. Journal of Ambient Intelligence and Humanized Computing, 15(6), pp. 2827–2838. DOI: https://doi.org/10.1007/s12652-024-04774-2

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.