Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Aplicación de la nueva medida difusa en la toma de decisiones multiatributos

Resumen

En este artículo se aborda la implementación de la toma de decisiones multiatributo (MADM) y los diferentes enfoques que la facilitan. Nos centramos en una medida de divergencia difusa desarrollada recientemente, que es fundamental para mejorar la precisión de las decisiones cuando se enfrentan varios criterios contradictorios. Para resaltar su relevancia en el mundo real, presentamos un estudio de caso detallado que se centra en elegir el mejor mercado para invertir. En este estudio de caso, la medida de divergencia difusa previamente estudiada se utiliza para evaluar y priorizar varias posibilidades de mercado en función de características importantes como el riesgo, el rendimiento y el potencial de mercado. En este ejemplo, demostramos cómo esta medida única mejora los procesos de toma de decisiones al proporcionar un método más preciso y completo para seleccionar las mayores posibilidades de inversión en contextos inciertos y complicados. Los hallazgos resaltan la utilidad de la medida para guiar las decisiones de inversión y mejorar la eficacia general de las aplicaciones MADM.

Códigos JEL: C44, D80, D81, D11

Recibido: 19/07/2024. Aceptado: 06/10/2024. Publicado: 20/10/2024.

Palabras clave

Nueva medida de divergencia difusa, propiedades, toma de decisiones multiatributo, presentación numérica

PDF (English)

Citas

  1. Bajaj, R. K., & Hooda, D. S. (2010). On some new generalized measures of fuzzy information. World Academy of Science, Engineering and Technology, 38, 747–752.
  2. Bozorg‐Haddad, O., Loáiciga, H., & Zolghadr‐Asli, B. (2021).
  3. Handbook on Multi‐Attribute Decision‐Making Methods. https://doi.org/10.1002/9781119563501 DOI: https://doi.org/10.1002/9781119563501
  4. Bhandari, D., & Pal, N. R. (1993). Some new information measures for fuzzy sets. Information Sciences, 67(3), 209–228. https://doi.org/10.1016/0020-0255(93)90073-u DOI: https://doi.org/10.1016/0020-0255(93)90073-U
  5. Celik, E., Gul, M., Yucesan, M., & Mete, S. (2019). Stochastic multi-criteria decision-making: an overview to methods and applications. Beni-Suef University Journal of Basic and Applied Sciences, 8(1). https://doi.org/10.1186/s43088-019-0005-0. DOI: https://doi.org/10.1186/s43088-019-0005-0
  6. Chhabra, P., & Chhabra, S. (2023). A new fuzzy divergence measure and its properties. In Proceedings of the 1st International Conference on Computational Applied Sciences and Its Applications (AIP Conf. Proc. 2768, pp. 020030-1–020030-8). ICCASA, Jaipur, India. https://doi.org/10.1063/5.0148323 DOI: https://doi.org/10.1063/5.0148323
  7. Criado, F., & Gachechiladze, T. (1997). Entropy of fuzzy events. Fuzzy Sets and Systems, 88(1), 99–106. https://doi.org/10.1016/s0165-0114(96)00073-5 DOI: https://doi.org/10.1016/S0165-0114(96)00073-5
  8. De Luca, A., & Termini, S. (1972). A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information and Control, 20(4), 301–312. https://doi.org/10.1016/s0019-9958(72)90199-4 DOI: https://doi.org/10.1016/S0019-9958(72)90199-4
  9. Jain, K. C., & Chhabra, P. (2014). Bounds of new f-divergence measure by using new information inequality. Antarctica Journal of Mathematics, 11(1), 55–68.
  10. Kahraman, C. (2008). Multi-criteria decision-making methods and fuzzy sets. In Springer Optimization and Its Applications (pp. 1–18). https://doi.org/10.1007/978-0-387-76813-7_1 DOI: https://doi.org/10.1007/978-0-387-76813-7_1
  11. Montes, S., Couso, I., Gil, P., & Bertoluzza, C. (2002). Divergence measure between fuzzy sets. International Journal of Approximate Reasoning, 30(2), 91–105. https://doi.org/10.1016/s0888-613x(02)00063-4 DOI: https://doi.org/10.1016/S0888-613X(02)00063-4
  12. Ohlan, A. (2015). A New Generalized Fuzzy Divergence Measure and Applications. Fuzzy Information and Engineering, 7(4), 507–523. https://doi.org/10.1016/j.fiae.2015.11.007 DOI: https://doi.org/10.1016/j.fiae.2015.11.007
  13. Pal, N., & Bezdek, J. (1994). Measuring fuzzy uncertainty. IEEE Transactions on Fuzzy Systems, 2(2), 107–118. https://doi.org/10.1109/91.277960 DOI: https://doi.org/10.1109/91.277960
  14. Pal, N. R., & Pal, S. K. (1989). Object-background segmentation using new definitions of entropy. IEE Proceedings E (Computers and Digital Techniques), 136(4), 284–295. https://doi.org/10.1049/ip-e.1989.0039 DOI: https://doi.org/10.1049/ip-e.1989.0039
  15. Parkash, O., & Gandhi, C. P. (2010). Applications of trigonometric measures of fuzzy entropy to geometry. World Academy of Science, Engineering and Technology, 37, 468–471.
  16. Rani, P., Govindan, K., Mishra, A. R., Mardani, A., Alrasheedi, M., & Hooda, D. S. (2020b). Unified Fuzzy Divergence Measures with Multi-Criteria Decision Making Problems for Sustainable Planning of an E-Waste Recycling Job Selection. Symmetry, 12(1), 90. https://doi.org/10.3390/sym12010090 DOI: https://doi.org/10.3390/sym12010090
  17. Rényi,A.(1961).On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics, and Probability, Vol. I (pp. 547–562). University of California Press.
  18. Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  19. Umar, A., & Saraswat, R. N. (2021). New Generalized Intuitionistic Fuzzy Divergence Measure with Applications to Multi-Attribute Decision Making and Pattern Recognition. Recent Advances in Computer Science and Communications, 14(7), 2247–2266. https://doi.org/10.2174/2666255813666200224093221 DOI: https://doi.org/10.2174/2666255813666200224093221
  20. Verma ,R.,& Sharma, B.D. (2011). On generalized exponential fuzzy entropy. World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 5(12), 1895–1898.
  21. Verma, R., & Sharma, B. D. (2014). A New Inaccuracy Measure for Fuzzy Sets and its Application in Multi-Criteria Decision Making. International Journal of Intelligent Systems and Applications, 6(5), 62–69. https://doi.org/10.5815/ijisa.2014.05.06 DOI: https://doi.org/10.5815/ijisa.2014.05.06
  22. Verma, R., & Dev, B. (2015). Hesitant fuzzy geometric Heronian mean operators and their application to multi-criteria decision making. Scientiae Mathematicae Japonicae, 281, 23–39.
  23. Yager, R. R. (2001). A general approach to uncertainty representation using fuzzy measures. In The Florida AI Research Society (pp. 619–623).
  24. Zadeh, L. (1968). Probability measures of Fuzzy events. Journal of Mathematical Analysis and Applications, 23(2), 421–427. DOI: https://doi.org/10.1016/0022-247X(68)90078-4
  25. Zadeh, L. A. (2002). Toward a generalized theory of uncertainty (GTU): An outline. Information Sciences: Informatics and Computer Sciences, 172(1), 1–40. DOI: https://doi.org/10.1016/j.ins.2005.01.017
  26. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.