Neuroeconomía: una revisión basada en técnicas de mapeo científico
Resumen
La neuroeconomía es un campo multidisciplinar, que articula los conocimientos de áreas como la Economía, la psicología y la neurociencia, y que estudia el comportamiento cerebral en la toma de decisiones. A través de una revisión de literatura, se presenta la evolución de la investigación en neuroeconomía. Para ello, se emplean técnicas de mapeo científico, apoyadas en herramientas bibliométricas. La búsqueda, se realizó en las bases de datos WoS y Scopus, y la información obtenida fue procesada con las herramientas Bibliometrix y Gephi. Los documentos se clasificaron según su relevancia, en tres categorías: clásicos, estructurales y actuales. Luego, a través de un análisis de co-citaciones y clusterización, se identificaron y analizaron cinco líneas o corrientes de investigación en el área, a saber: elecciones económicas, elección social, consideraciones sobre la neuroeconomía, neurociencia del consumidor y comportamiento y estímulo cerebral. Se concluye con la necesidad de encontrar y estandarizar una metodología de investigación, en la que converjan los criterios para fortalecer los resultados de las investigaciones realizadas, ya que no se pueden desconocer las limitaciones de las metodologías actuales.
Palabras clave
neuroeconomía;, toma de decisiones;, elección social;, recompensa
Biografía del autor/a
Damiand Felipe Trejos-Salazar
Administrador de Empresas, Magíster en Administración
Pedro Luis Duque-Hurtado
Administrador de Empresas, Magíster en Administración
Luz Alexandra Montoya-Restrepo
Administradora de Empresas, Doctora en Ciencias Económicas
Iván Alonso Montoya-Restrepo
Administrador de Empresas, Doctor en Ciencias Económicas
Referencias
Addor, N., & Melsen, L. A. (2019). Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models. Water Resources Research, 55 (1), 378–390. https://doi.org/10.1029/2018WR022958
Almeida, F., & de Paula, L. G. (2019). The Place of Uncertainty in Heterodox Economics Journals: A Bibliometric Study. Journal of Economic Issues, 53 (2), 553–562. https://doi.org/10.1080/00213624.2019.1603771
Alonso, S. (2013). Temporal Discounting and Number Representation. Journal of Behavioral Finance, 14 (3), 240–251. https://doi.org/10.1080/15427560.2013.820188
Amlung, M., Sweet, L. H., Acker, J., Brown, C. L., & MacKillop, J. (2014). Dissociable brain signatures of choice conflict and immediate reward preferences in alcohol use disorders. Addiction Biology, 19 (4), 743–753. https://doi.org/10.1111/adb.12017
Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11 (4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427. https://doi.org/10.1016/j.neuroimage.2013.02.063
Beeler, J. A., & Mourra, D. (2018). To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Frontiers in Integrative Neuroscience, 12, 6. https://doi.org/10.3389/fnint.2018.00006
Bickel, W. K., Miller, M. L., Yi, R., Kowal, B. P., Lindquist, D. M., & Pitcock, J. A. (2007). Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug and Alcohol Dependence, 90 Suppl 1, S85–S91. https://doi.org/10.1016/j.drugalcdep.2006.09.016
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008 (10), P10008. https://doi.org/10.1088/1742-5468/2008/10/p10008
Bond, M., & Buntins, K. (2018). An analysis of the Australasian Journal of Educational Technology 2013-2017. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.4359
Buitrago, S., Duque, P., & Robledo, S. (2020). Branding Corporativo: una revisión bibliográfica. ECONÓMICAS CUC, 41(1). https://doi.org/10.17981/econcuc.41.1.2020.Org.1
Camerer, C. F. (2007). Neuroeconomics: Using Neuroscience to Make Economic Predictions. The Economic Journal of Nepal, 117(519), C26–C42. https://doi.org/10.1111/j.1468-0297.2007.02033.x
Camerer, C. F. (2013). A Review Essay about Foundations of Neuroeconomic Analysis by Paul Glimcher. Journal of Economic Literature, 51(4), 1155–1182. https://doi.org/10.1257/jel.51.4.1155
Camerer, C., Loewenstein, G., & Prelec, D. (2005). Neuroeconomics: How Neuroscience Can Inform Economics. Journal of Economic Literature, 43(1), 9–64. https://doi.org/10.1257/0022051053737843
D’Angiulli, A., Lipina, S. J., & Olesinska, A. (2012). Explicit and implicit issues in the developmental cognitive neuroscience of social inequality. Frontiers in Human Neuroscience, 6, 254. https://doi.org/10.3389/fnhum.2012.00254
Delgado, M. R., & Dickerson, K. C. (2012). Reward-related learning via multiple memory systems. Biological Psychiatry, 72(2), 134–141. https://doi.org/10.1016/j.biopsych.2012.01.023
Delgado, M. R., Li, J., Schiller, D., & Phelps, E. A. (2008). The role of the striatum in aversive learning and aversive prediction errors. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1511), 3787–3800. https://doi.org/10.1098/rstb.2008.0161
Dietrich, F., & List, C. (2016). MENTALISM VERSUS BEHAVIOURISM IN ECONOMICS: A PHILOSOPHY-OF-SCIENCE PERSPECTIVE. Economics and Philosophy, 32(2), 249–281. https://doi.org/10.1017/S0266267115000462
Duque, P., & Cervantes-Cervantes, L.-S. (2019). Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales, 451–464. https://doi.org/10.18046/j.estger.2019.153.3389
Fehr, E., & Rangel, A. (2011). Neuroeconomic Foundations of Economic Choice—Recent Advances. The Journal of Economic Perspectives: A Journal of the American Economic Association, 25(4), 3–30. https://doi.org/10.1257/jep.25.4.3
Fumagalli, R. (2014). Neural Findings and Economic Models: Why Brains Have Limited Relevance for Economics. Philosophy of the Social Sciences, 44(5), 606–629. https://doi.org/10.1177/0048393114530948
Fumagalli, R. (2016). Five theses on neuroeconomics. Journal of Economic Methodology, 23(1), 77–96. https://doi.org/10.1080/1350178X.2015.1024883
Fumagalli, R. (2017). On the neural enrichment of economic models: recasting the challenge. Biology & Philosophy, 32(2), 201–220. https://doi.org/10.1007/s10539-016-9546-y
Glimcher, P. W., & Rustichini, A. (2004). Neuroeconomics: the consilience of brain and decision. Science, 306(5695), 447–452. https://doi.org/10.1126/science.1102566
Harris, J. M., Ciorciari, J., & Gountas, J. (2018). Public health social media communications and consumer neuroscience. Cogent Psychology, 5(1), 888. https://doi.org/10.1080/23311908.2018.1434058
Harrison, G. W. (2008). NEUROECONOMICS: A CRITICAL RECONSIDERATION. Economics and Philosophy, 24(3), 303–344. https://doi.org/10.1017/S0266267108002009
Holper, L., Wolf, M., & Tobler, P. N. (2014). Comparison of functional near-infrared spectroscopy and electrodermal activity in assessing objective versus subjective risk during risky financial decisions. NeuroImage, 84, 833–842. https://doi.org/10.1016/j.neuroimage.2013.09.047
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making (Review of Neural systems responding to degrees of uncertainty in human decision-making). Science, 310(5754), 1680–1683. https://doi.org/10.1126/science.1115327
Kable, J. W., & Levy, I. (2015). Neural markers of individual differences in decision-making. Current Opinion in Behavioral Sciences, 5, 100–107. https://doi.org/10.1016/j.cobeha.2015.08.004
Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica: Journal of the Econometric Society, 47(2), 263. https://doi.org/10.2307/1914185
Kangas, B. D., & Walker, D. J. (2008). An adjusting-dose procedure for assessing the reinforcing effects of nitrous oxide with humans. Pharmacology, Biochemistry, and Behavior, 91(1), 104–108. https://doi.org/10.1016/j.pbb.2008.06.017
Karmarkar, U. R., & Plassmann, H. (2019). Consumer Neuroscience: Past, Present, and Future. Organizational Research Methods, 22(1), 174–195. https://doi.org/10.1177/1094428117730598
Kedia, G., Harris, L., Lelieveld, G.-J., & van Dillen, L. (2017). From the Brain to the Field: The Applications of Social Neuroscience to Economics, Health and Law. Brain Sciences, 7(8). https://doi.org/10.3390/brainsci7080094
Kenning, P., & Plassmann, H. (2005). Neuroeconomics: an overview from an economic perspective. Brain Research Bulletin, 67(5), 343–354. https://doi.org/10.1016/j.brainresbull.2005.07.006
Kishida, K. T., King-Casas, B., & Montague, P. R. (2010). Neuroeconomic approaches to mental disorders. Neuron, 67(4), 543–554. https://doi.org/10.1016/j.neuron.2010.07.021
Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147–156. https://doi.org/10.1016/j.neuron.2006.11.010
Konovalov, A., & Krajbich, I. (2019). Over a Decade of Neuroeconomics: What Have We Learned? Organizational Research Methods, 22(1), 148–173. https://doi.org/10.1177/1094428116644502
Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience, 8, 549. https://doi.org/10.3389/fnhum.2014.00549
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–676. https://doi.org/10.1038/nature03701
Krajbich, I., & Dean, M. (2015). How can neuroscience inform economics? Current Opinion in Behavioral Sciences, 5, 51–57. https://doi.org/10.1016/j.cobeha.2015.07.005
Krause, F., & Lindemann, O. (2014). Expyriment: a Python library for cognitive and neuroscientific experiments. Behavior Research Methods, 46(2), 416–428. https://doi.org/10.3758/s13428-013-0390-6
Krueger, F., & Meyer-Lindenberg, A. (2019). Toward a Model of Interpersonal Trust Drawn from Neuroscience, Psychology, and Economics. Trends in Neurosciences, 42(2), 92–101. https://doi.org/10.1016/j.tins.2018.10.004
Landínez-Martínez, D. A., Robledo, S., & Montoya-Londoño, D. M. (2019). Executive function performance in patients with obesity: a systematic review. Psychologia; an International Journal of Psychology in the Orient, 13(2), 121–134. https://doi.org/10.21500/19002386.4230
Lawn, W., Mithchener, L., Freeman, T. P., Benattayallah, A., Bisby, J. A., Wall, M. B., Dodds, C. M., Curran, H. V., & Morgan, C. J. A. (2019). Value-based decision-making of cigarette and nondrug rewards in dependent and occasional cigarette smokers: An FMRI study. Addiction Biology, e12802. https://doi.org/10.1111/adb.12802
Lee, V. K., & Harris, L. T. (2013). How social cognition can inform social decision making. Frontiers in Neuroscience, 7, 259. https://doi.org/10.3389/fnins.2013.00259
Levallois, C., Smidts, A., & Wouters, P. (2019). The emergence of neuromarketing investigated through online public communications (2002–2008). Business History, 450, 1–40. https://doi.org/10.1080/00076791.2019.1579194
Levy, D. J., & Glimcher, P. W. (2012). The root of all value: a neural common currency for choice. Current Opinion in Neurobiology, 22(6), 1027–1038. https://doi.org/10.1016/j.conb.2012.06.001
Lin, H., & Vartanian, O. (2018). A Neuroeconomic Framework for Creative Cognition. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 13(6), 655–677. https://doi.org/10.1177/1745691618794945
Loewenstein, G., Rick, S., & Cohen, J. D. (2008). Neuroeconomics. Annual Review of Psychology, 59, 647–672. https://doi.org/10.1146/annurev.psych.59.103006.093710
Louie, K., Khaw, M. W., & Glimcher, P. W. (2013). Normalization is a general neural mechanism for context-dependent decision making. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6139–6144. https://doi.org/10.1073/pnas.1217854110
Lukinova, E., & Myagkov, M. (2016). Impact of Short Social Training on Prosocial Behaviors: An fMRI Study. Frontiers in Systems Neuroscience, 10, 60. https://doi.org/10.3389/fnsys.2016.00060
MacKillop, J., Amlung, M. T., Acker, J., Gray, J. C., Brown, C. L., Murphy, J. G., Ray, L. A., & Sweet, L. H. (2014). The neuroeconomics of alcohol demand: an initial investigation of the neural correlates of alcohol cost-benefit decision making in heavy drinking men. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 39(8), 1988–1995. https://doi.org/10.1038/npp.2014.47
Marín-López, J. C., Robledo, S., & Duque-Méndez, N. D. (2017). Marketing Emprendedor: Una perspectiva cronológica utilizando Tree of Science. Revista Civilizar de Empresa Y Economía, 7(13), 113–123. https://revistas.usergioarboleda.edu.co/index.php/ceye/article/view/923
McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(21), 5796–5804. https://doi.org/10.1523/JNEUROSCI.4246-06.2007
McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503–507. https://doi.org/10.1126/science.1100907
McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379–387. https://doi.org/10.1016/j.neuron.2004.09.019
McKiernan, P. (2017). Prospective thinking; scenario planning meets neuroscience. Technological Forecasting and Social Change, 124, 66–76. https://doi.org/10.1016/j.techfore.2016.10.069
McMaster, R., & Novarese, M. (2016). Neuroeconomics: Infeasible and Underdetermined. Journal of Economic Issues, 50(4), 963–983. https://doi.org/10.1080/00213624.2016.1249745
Medina, J., Ojeda-Aciego, M., Verdegay, J. L., Perfilieva, I., Bouchon-Meunier, B., & Yager, R. R. (Eds.). (2018). Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications: 17th International Conference, IPMU 2018, Cádiz, Spain, June 11-15, 2018, Proceedings, Part III (Vol. 855). Springer International Publishing. https://doi.org/10.1007/978-3-319-91479-4
Mellick, W., Sharp, C., & Ernst, M. (2015). Neuroeconomics for the Study of Social Cognition in Adolescent Depression. Clinical Psychology: Science and Practice, 22(3), 255–276. https://doi.org/10.1111/cpsp.12106
Meyerding, S. G. H., & Risius, A. (2018). Reading minds: Mobile functional near-infrared spectroscopy as a new neuroimaging method for economic and marketing research—A feasibility study. Journal of Neuroscience, Psychology, and Economics, 11(4), 197–212. https://doi.org/10.1037/npe0000090
Mohr, P. N. C., Biele, G., & Heekeren, H. R. (2010). Neural processing of risk. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(19), 6613–6619. https://doi.org/10.1523/JNEUROSCI.0003-10.2010
Monterosso, J., Piray, P., & Luo, S. (2012). Neuroeconomics and the study of addiction. Biological Psychiatry, 72(2), 107–112. https://doi.org/10.1016/j.biopsych.2012.03.012
Ohri, A. (2013). R for Business Analytics. Suiza: Springer Nature. https://doi.org/10.1007/978-1-4614-4343-8
Okasha, S. (2016). ON THE INTERPRETATION OF DECISION THEORY. Economics and Philosophy, 32(3), 409–433. https://doi.org/10.1017/S0266267115000346
Padoa-Schioppa, C. (2011). Neurobiology of economic choice: a good-based model. Annual Review of Neuroscience, 34, 333–359. https://doi.org/10.1146/annurev-neuro-061010-113648
Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441(7090), 223–226. https://doi.org/10.1038/nature04676
Pearson, J. M., Watson, K. K., & Platt, M. L. (2014). Decision making: the neuroethological turn. Neuron, 82(5), 950–965. https://doi.org/10.1016/j.neuron.2014.04.037
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 59–63. https://doi.org/10.1016/j.tics.2005.12.004
Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activation reflects risk prediction errors as well as risk. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(11), 2745–2752. https://doi.org/10.1523/JNEUROSCI.4286-07.2008
Raghuraman, A. P., & Padoa-Schioppa, C. (2014). Integration of multiple determinants in the neuronal computation of economic values. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(35), 11583–11603. https://doi.org/10.1523/JNEUROSCI.1235-14.2014
Rakviashvili, A. (2015). Neurobiology and New Opportunities for Experimental Economics. Voprosy Ekonomiki, 12, 124–137. https://doi.org/10.32609/0042-8736-2015-12-124-137
Ramírez, M. H. (2010). Neurofinanzas: Cuando las decisiones financieras no son racionales. Tec Empresarial, 4(3), 21–30. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=3398008&info=resumen&idioma=ENG
Ramsøy, T. Z., Jacobsen, C., Friis-Olivarius, M., Bagdziunaite, D., & Skov, M. (2017). Predictive value of body posture and pupil dilation in assessing consumer preference and choice. Journal of Neuroscience, Psychology, and Economics, 10(2-3), 95–110. https://doi.org/10.1037/npe0000073
Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews. Neuroscience, 9(7), 545–556. https://doi.org/10.1038/nrn2357
Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision-making. Annual Review of Psychology, 62, 23–48. https://doi.org/10.1146/annurev.psych.121208.131647
Robledo-Giraldo, S., Duque-Méndez, N. D., & Zuluaga-Giraldo, J. I. (2013). Difusión de productos a través de redes sociales: una revisión bibliográfica utilizando la teoría de grafos. Respuestas, 18 (2), 28–42. https://doi.org/10.22463/0122820x.361
Robledo, S., Osorio, G., & Lopez, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoría de grafos. Investigación y Desarrollo, 11(2).
Robson, S. E., Repetto, L., Gountouna, V.-E., & Nicodemus, K. K. (2020). A review of neuroeconomic gameplay in psychiatric disorders. Molecular Psychiatry, 25(1), 67–81. https://doi.org/10.1038/s41380-019-0405-5
Sanfey, A. G. (2007). Social decision-making: insights from game theory and neuroscience. Science, 318(5850), 598–602. https://doi.org/10.1126/science.1142996
Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the Ultimatum Game. Science, 300(5626), 1755–1758. https://doi.org/10.1126/science.1082976
Scheele, D., Mihov, Y., Schwederski, O., Maier, W., & Hurlemann, R. (2013). A negative emotional and economic judgment bias in major depression. European Archives of Psychiatry and Clinical Neuroscience, 263(8), 675–683. https://doi.org/10.1007/s00406-013-0392-5
Scherbaum, S., Dshemuchadse, M., & Kalis, A. (2008). Making decisions with a continuous mind. Cognitive, Affective & Behavioral Neuroscience, 8(4), 454–474. https://doi.org/10.3758/CABN.8.4.454
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593
Serra, D. (2012). Un aperçu historique de l’économie expérimentale : des origines aux évolutions récentes. Revue D’économie Politique, 122(5), 749. https://doi.org/10.3917/redp.225.0749
Sharp, C., Monterosso, J., & Montague, P. R. (2012). Neuroeconomics: a bridge for translational research. Biological Psychiatry, 72(2), 87–92. https://doi.org/10.1016/j.biopsych.2012.02.029
Shizgal, P. (2012). Scarce means with alternative uses: robbins’ definition of economics and its extension to the behavioral and neurobiological study of animal decision making. Frontiers in Neuroscience, 6, 20. https://doi.org/10.3389/fnins.2012.00020
Smith, A. C., Frank, L. M., Wirth, S., Yanike, M., Hu, D., Kubota, Y., Graybiel, A. M., Suzuki, W. A., & Brown, E. N. (2004). Dynamic analysis of learning in behavioral experiments. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(2), 447–461. https://doi.org/10.1523/JNEUROSCI.2908-03.2004
Sonuga-Barke, E. J. S., Cortese, S., Fairchild, G., & Stringaris, A. (2016). Annual Research Review: Transdiagnostic neuroscience of child and adolescent mental disorders--differentiating decision making in attention-deficit/hyperactivity disorder, conduct disorder, depression, and anxiety. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 57(3), 321–349. https://doi.org/10.1111/jcpp.12496
Trepel, C., Fox, C. R., & Poldrack, R. A. (2005). Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk. Brain Research. Cognitive Brain Research, 23(1), 34–50. https://doi.org/10.1016/j.cogbrainres.2005.01.016
Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124
Volk, S., & Köhler, T. (2012). Brains and Games: Applying Neuroeconomics to Organizational Research. Organizational Research Methods, 15(4), 522–552. https://doi.org/10.1177/1094428112449656
Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, Affective & Behavioral Neuroscience, 15(2), 395–415. https://doi.org/10.3758/s13415-015-0334-y
Wilson, A. G., Franck, C. T., Mueller, E. T., Landes, R. D., Kowal, B. P., Yi, R., & Bickel, W. K. (2015). Predictors of delay discounting among smokers: education level and a Utility Measure of Cigarette Reinforcement Efficacy are better predictors than demographics, smoking characteristics, executive functioning, impulsivity, or time perception. Addictive Behaviors, 45, 124–133. https://doi.org/10.1016/j.addbeh.2015.01.027
Yu, R., & Zhou, X. (2007). Neuroeconomics: Opening the “black box” behind the economic behavior. Chinese Science Bulletin = Kexue Tongbao, 52(9), 1153–1161. https://doi.org/10.1007/s11434-007-0193-1
Zuluaga, M., Robledo, S., Osorio-Zuluaga, G. A., Yathe, L., Gonzalez, D., & Taborda, G. (2016). Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el análisis de referencias. Nova, 14(25), 121. https://doi.org/10.22490/24629448.1735
Zupic, I., & Čater, T. (2015) ‘Bibliometric Methods in Management and Organization’, Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629