Skip to main navigation menu Skip to main content Skip to site footer

Neuroeconomics: a review based on scientific mapping techniques

Abstract

Neuroeconomics is a multidisciplinary field, which articulates the knowledge of areas such as economics, psychology and neuroscience, and which studies brain behavior in decision-making. Through a literature review, the evolution of research in neuroeconomics is presented. For this, scientific mapping techniques are used, supported by bibliometric tools. The search was carried out in the WoS and Scopus databases, and the information obtained was processed with the Bibliometrix and Gephi tools. The documents were classified according to their relevance, into three categories: classic, structural and current. Then, through an analysis of co-citations and clustering, five lines or currents of research in the area were identified and analyzed, namely: economic choices, social choice, considerations on neuroeconomics, consumer neuroscience and behavior and brain stimulation . It concludes with the need to find and standardize a research methodology, in which the criteria converge to strengthen the results of the research carried out, since the limitations of current methodologies cannot be ignored.

Keywords

neuroeconomics;, decision making;, social choice;, reward

PDF (Español) XML (Español)

Author Biography

Damiand Felipe Trejos-Salazar

Administrador de Empresas, Magíster en Administración

Pedro Luis Duque-Hurtado

Administrador de Empresas, Magíster en Administración

Luz Alexandra Montoya-Restrepo

Administradora de Empresas, Doctora en Ciencias Económicas

Iván Alonso Montoya-Restrepo

Administrador de Empresas, Doctor en Ciencias Económicas


References

Addor, N., & Melsen, L. A. (2019). Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models. Water Resources Research, 55 (1), 378–390. https://doi.org/10.1029/2018WR022958

Almeida, F., & de Paula, L. G. (2019). The Place of Uncertainty in Heterodox Economics Journals: A Bibliometric Study. Journal of Economic Issues, 53 (2), 553–562. https://doi.org/10.1080/00213624.2019.1603771

Alonso, S. (2013). Temporal Discounting and Number Representation. Journal of Behavioral Finance, 14 (3), 240–251. https://doi.org/10.1080/15427560.2013.820188

Amlung, M., Sweet, L. H., Acker, J., Brown, C. L., & MacKillop, J. (2014). Dissociable brain signatures of choice conflict and immediate reward preferences in alcohol use disorders. Addiction Biology, 19 (4), 743–753. https://doi.org/10.1111/adb.12017

Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11 (4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427. https://doi.org/10.1016/j.neuroimage.2013.02.063

Beeler, J. A., & Mourra, D. (2018). To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Frontiers in Integrative Neuroscience, 12, 6. https://doi.org/10.3389/fnint.2018.00006

Bickel, W. K., Miller, M. L., Yi, R., Kowal, B. P., Lindquist, D. M., & Pitcock, J. A. (2007). Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug and Alcohol Dependence, 90 Suppl 1, S85–S91. https://doi.org/10.1016/j.drugalcdep.2006.09.016

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008 (10), P10008. https://doi.org/10.1088/1742-5468/2008/10/p10008

Bond, M., & Buntins, K. (2018). An analysis of the Australasian Journal of Educational Technology 2013-2017. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.4359

Buitrago, S., Duque, P., & Robledo, S. (2020). Branding Corporativo: una revisión bibliográfica. ECONÓMICAS CUC, 41(1). https://doi.org/10.17981/econcuc.41.1.2020.Org.1

Camerer, C. F. (2007). Neuroeconomics: Using Neuroscience to Make Economic Predictions. The Economic Journal of Nepal, 117(519), C26–C42. https://doi.org/10.1111/j.1468-0297.2007.02033.x

Camerer, C. F. (2013). A Review Essay about Foundations of Neuroeconomic Analysis by Paul Glimcher. Journal of Economic Literature, 51(4), 1155–1182. https://doi.org/10.1257/jel.51.4.1155

Camerer, C., Loewenstein, G., & Prelec, D. (2005). Neuroeconomics: How Neuroscience Can Inform Economics. Journal of Economic Literature, 43(1), 9–64. https://doi.org/10.1257/0022051053737843

D’Angiulli, A., Lipina, S. J., & Olesinska, A. (2012). Explicit and implicit issues in the developmental cognitive neuroscience of social inequality. Frontiers in Human Neuroscience, 6, 254. https://doi.org/10.3389/fnhum.2012.00254

Delgado, M. R., & Dickerson, K. C. (2012). Reward-related learning via multiple memory systems. Biological Psychiatry, 72(2), 134–141. https://doi.org/10.1016/j.biopsych.2012.01.023

Delgado, M. R., Li, J., Schiller, D., & Phelps, E. A. (2008). The role of the striatum in aversive learning and aversive prediction errors. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1511), 3787–3800. https://doi.org/10.1098/rstb.2008.0161

Dietrich, F., & List, C. (2016). MENTALISM VERSUS BEHAVIOURISM IN ECONOMICS: A PHILOSOPHY-OF-SCIENCE PERSPECTIVE. Economics and Philosophy, 32(2), 249–281. https://doi.org/10.1017/S0266267115000462

Duque, P., & Cervantes-Cervantes, L.-S. (2019). Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales, 451–464. https://doi.org/10.18046/j.estger.2019.153.3389

Fehr, E., & Rangel, A. (2011). Neuroeconomic Foundations of Economic Choice—Recent Advances. The Journal of Economic Perspectives: A Journal of the American Economic Association, 25(4), 3–30. https://doi.org/10.1257/jep.25.4.3

Fumagalli, R. (2014). Neural Findings and Economic Models: Why Brains Have Limited Relevance for Economics. Philosophy of the Social Sciences, 44(5), 606–629. https://doi.org/10.1177/0048393114530948

Fumagalli, R. (2016). Five theses on neuroeconomics. Journal of Economic Methodology, 23(1), 77–96. https://doi.org/10.1080/1350178X.2015.1024883

Fumagalli, R. (2017). On the neural enrichment of economic models: recasting the challenge. Biology & Philosophy, 32(2), 201–220. https://doi.org/10.1007/s10539-016-9546-y

Glimcher, P. W., & Rustichini, A. (2004). Neuroeconomics: the consilience of brain and decision. Science, 306(5695), 447–452. https://doi.org/10.1126/science.1102566

Harris, J. M., Ciorciari, J., & Gountas, J. (2018). Public health social media communications and consumer neuroscience. Cogent Psychology, 5(1), 888. https://doi.org/10.1080/23311908.2018.1434058

Harrison, G. W. (2008). NEUROECONOMICS: A CRITICAL RECONSIDERATION. Economics and Philosophy, 24(3), 303–344. https://doi.org/10.1017/S0266267108002009

Holper, L., Wolf, M., & Tobler, P. N. (2014). Comparison of functional near-infrared spectroscopy and electrodermal activity in assessing objective versus subjective risk during risky financial decisions. NeuroImage, 84, 833–842. https://doi.org/10.1016/j.neuroimage.2013.09.047

Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making (Review of Neural systems responding to degrees of uncertainty in human decision-making). Science, 310(5754), 1680–1683. https://doi.org/10.1126/science.1115327

Kable, J. W., & Levy, I. (2015). Neural markers of individual differences in decision-making. Current Opinion in Behavioral Sciences, 5, 100–107. https://doi.org/10.1016/j.cobeha.2015.08.004

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica: Journal of the Econometric Society, 47(2), 263. https://doi.org/10.2307/1914185

Kangas, B. D., & Walker, D. J. (2008). An adjusting-dose procedure for assessing the reinforcing effects of nitrous oxide with humans. Pharmacology, Biochemistry, and Behavior, 91(1), 104–108. https://doi.org/10.1016/j.pbb.2008.06.017

Karmarkar, U. R., & Plassmann, H. (2019). Consumer Neuroscience: Past, Present, and Future. Organizational Research Methods, 22(1), 174–195. https://doi.org/10.1177/1094428117730598

Kedia, G., Harris, L., Lelieveld, G.-J., & van Dillen, L. (2017). From the Brain to the Field: The Applications of Social Neuroscience to Economics, Health and Law. Brain Sciences, 7(8). https://doi.org/10.3390/brainsci7080094

Kenning, P., & Plassmann, H. (2005). Neuroeconomics: an overview from an economic perspective. Brain Research Bulletin, 67(5), 343–354. https://doi.org/10.1016/j.brainresbull.2005.07.006

Kishida, K. T., King-Casas, B., & Montague, P. R. (2010). Neuroeconomic approaches to mental disorders. Neuron, 67(4), 543–554. https://doi.org/10.1016/j.neuron.2010.07.021

Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147–156. https://doi.org/10.1016/j.neuron.2006.11.010

Konovalov, A., & Krajbich, I. (2019). Over a Decade of Neuroeconomics: What Have We Learned? Organizational Research Methods, 22(1), 148–173. https://doi.org/10.1177/1094428116644502

Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience, 8, 549. https://doi.org/10.3389/fnhum.2014.00549

Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–676. https://doi.org/10.1038/nature03701

Krajbich, I., & Dean, M. (2015). How can neuroscience inform economics? Current Opinion in Behavioral Sciences, 5, 51–57. https://doi.org/10.1016/j.cobeha.2015.07.005

Krause, F., & Lindemann, O. (2014). Expyriment: a Python library for cognitive and neuroscientific experiments. Behavior Research Methods, 46(2), 416–428. https://doi.org/10.3758/s13428-013-0390-6

Krueger, F., & Meyer-Lindenberg, A. (2019). Toward a Model of Interpersonal Trust Drawn from Neuroscience, Psychology, and Economics. Trends in Neurosciences, 42(2), 92–101. https://doi.org/10.1016/j.tins.2018.10.004

Landínez-Martínez, D. A., Robledo, S., & Montoya-Londoño, D. M. (2019). Executive function performance in patients with obesity: a systematic review. Psychologia; an International Journal of Psychology in the Orient, 13(2), 121–134. https://doi.org/10.21500/19002386.4230

Lawn, W., Mithchener, L., Freeman, T. P., Benattayallah, A., Bisby, J. A., Wall, M. B., Dodds, C. M., Curran, H. V., & Morgan, C. J. A. (2019). Value-based decision-making of cigarette and nondrug rewards in dependent and occasional cigarette smokers: An FMRI study. Addiction Biology, e12802. https://doi.org/10.1111/adb.12802

Lee, V. K., & Harris, L. T. (2013). How social cognition can inform social decision making. Frontiers in Neuroscience, 7, 259. https://doi.org/10.3389/fnins.2013.00259

Levallois, C., Smidts, A., & Wouters, P. (2019). The emergence of neuromarketing investigated through online public communications (2002–2008). Business History, 450, 1–40. https://doi.org/10.1080/00076791.2019.1579194

Levy, D. J., & Glimcher, P. W. (2012). The root of all value: a neural common currency for choice. Current Opinion in Neurobiology, 22(6), 1027–1038. https://doi.org/10.1016/j.conb.2012.06.001

Lin, H., & Vartanian, O. (2018). A Neuroeconomic Framework for Creative Cognition. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 13(6), 655–677. https://doi.org/10.1177/1745691618794945

Loewenstein, G., Rick, S., & Cohen, J. D. (2008). Neuroeconomics. Annual Review of Psychology, 59, 647–672. https://doi.org/10.1146/annurev.psych.59.103006.093710

Louie, K., Khaw, M. W., & Glimcher, P. W. (2013). Normalization is a general neural mechanism for context-dependent decision making. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6139–6144. https://doi.org/10.1073/pnas.1217854110

Lukinova, E., & Myagkov, M. (2016). Impact of Short Social Training on Prosocial Behaviors: An fMRI Study. Frontiers in Systems Neuroscience, 10, 60. https://doi.org/10.3389/fnsys.2016.00060

MacKillop, J., Amlung, M. T., Acker, J., Gray, J. C., Brown, C. L., Murphy, J. G., Ray, L. A., & Sweet, L. H. (2014). The neuroeconomics of alcohol demand: an initial investigation of the neural correlates of alcohol cost-benefit decision making in heavy drinking men. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 39(8), 1988–1995. https://doi.org/10.1038/npp.2014.47

Marín-López, J. C., Robledo, S., & Duque-Méndez, N. D. (2017). Marketing Emprendedor: Una perspectiva cronológica utilizando Tree of Science. Revista Civilizar de Empresa Y Economía, 7(13), 113–123. https://revistas.usergioarboleda.edu.co/index.php/ceye/article/view/923

McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(21), 5796–5804. https://doi.org/10.1523/JNEUROSCI.4246-06.2007

McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503–507. https://doi.org/10.1126/science.1100907

McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379–387. https://doi.org/10.1016/j.neuron.2004.09.019

McKiernan, P. (2017). Prospective thinking; scenario planning meets neuroscience. Technological Forecasting and Social Change, 124, 66–76. https://doi.org/10.1016/j.techfore.2016.10.069

McMaster, R., & Novarese, M. (2016). Neuroeconomics: Infeasible and Underdetermined. Journal of Economic Issues, 50(4), 963–983. https://doi.org/10.1080/00213624.2016.1249745

Medina, J., Ojeda-Aciego, M., Verdegay, J. L., Perfilieva, I., Bouchon-Meunier, B., & Yager, R. R. (Eds.). (2018). Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications: 17th International Conference, IPMU 2018, Cádiz, Spain, June 11-15, 2018, Proceedings, Part III (Vol. 855). Springer International Publishing. https://doi.org/10.1007/978-3-319-91479-4

Mellick, W., Sharp, C., & Ernst, M. (2015). Neuroeconomics for the Study of Social Cognition in Adolescent Depression. Clinical Psychology: Science and Practice, 22(3), 255–276. https://doi.org/10.1111/cpsp.12106

Meyerding, S. G. H., & Risius, A. (2018). Reading minds: Mobile functional near-infrared spectroscopy as a new neuroimaging method for economic and marketing research—A feasibility study. Journal of Neuroscience, Psychology, and Economics, 11(4), 197–212. https://doi.org/10.1037/npe0000090

Mohr, P. N. C., Biele, G., & Heekeren, H. R. (2010). Neural processing of risk. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(19), 6613–6619. https://doi.org/10.1523/JNEUROSCI.0003-10.2010

Monterosso, J., Piray, P., & Luo, S. (2012). Neuroeconomics and the study of addiction. Biological Psychiatry, 72(2), 107–112. https://doi.org/10.1016/j.biopsych.2012.03.012

Ohri, A. (2013). R for Business Analytics. Suiza: Springer Nature. https://doi.org/10.1007/978-1-4614-4343-8

Okasha, S. (2016). ON THE INTERPRETATION OF DECISION THEORY. Economics and Philosophy, 32(3), 409–433. https://doi.org/10.1017/S0266267115000346

Padoa-Schioppa, C. (2011). Neurobiology of economic choice: a good-based model. Annual Review of Neuroscience, 34, 333–359. https://doi.org/10.1146/annurev-neuro-061010-113648

Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441(7090), 223–226. https://doi.org/10.1038/nature04676

Pearson, J. M., Watson, K. K., & Platt, M. L. (2014). Decision making: the neuroethological turn. Neuron, 82(5), 950–965. https://doi.org/10.1016/j.neuron.2014.04.037

Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 59–63. https://doi.org/10.1016/j.tics.2005.12.004

Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activation reflects risk prediction errors as well as risk. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(11), 2745–2752. https://doi.org/10.1523/JNEUROSCI.4286-07.2008

Raghuraman, A. P., & Padoa-Schioppa, C. (2014). Integration of multiple determinants in the neuronal computation of economic values. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(35), 11583–11603. https://doi.org/10.1523/JNEUROSCI.1235-14.2014

Rakviashvili, A. (2015). Neurobiology and New Opportunities for Experimental Economics. Voprosy Ekonomiki, 12, 124–137. https://doi.org/10.32609/0042-8736-2015-12-124-137

Ramírez, M. H. (2010). Neurofinanzas: Cuando las decisiones financieras no son racionales. Tec Empresarial, 4(3), 21–30. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=3398008&info=resumen&idioma=ENG

Ramsøy, T. Z., Jacobsen, C., Friis-Olivarius, M., Bagdziunaite, D., & Skov, M. (2017). Predictive value of body posture and pupil dilation in assessing consumer preference and choice. Journal of Neuroscience, Psychology, and Economics, 10(2-3), 95–110. https://doi.org/10.1037/npe0000073

Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews. Neuroscience, 9(7), 545–556. https://doi.org/10.1038/nrn2357

Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision-making. Annual Review of Psychology, 62, 23–48. https://doi.org/10.1146/annurev.psych.121208.131647

Robledo-Giraldo, S., Duque-Méndez, N. D., & Zuluaga-Giraldo, J. I. (2013). Difusión de productos a través de redes sociales: una revisión bibliográfica utilizando la teoría de grafos. Respuestas, 18 (2), 28–42. https://doi.org/10.22463/0122820x.361

Robledo, S., Osorio, G., & Lopez, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoría de grafos. Investigación y Desarrollo, 11(2).

Robson, S. E., Repetto, L., Gountouna, V.-E., & Nicodemus, K. K. (2020). A review of neuroeconomic gameplay in psychiatric disorders. Molecular Psychiatry, 25(1), 67–81. https://doi.org/10.1038/s41380-019-0405-5

Sanfey, A. G. (2007). Social decision-making: insights from game theory and neuroscience. Science, 318(5850), 598–602. https://doi.org/10.1126/science.1142996

Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the Ultimatum Game. Science, 300(5626), 1755–1758. https://doi.org/10.1126/science.1082976

Scheele, D., Mihov, Y., Schwederski, O., Maier, W., & Hurlemann, R. (2013). A negative emotional and economic judgment bias in major depression. European Archives of Psychiatry and Clinical Neuroscience, 263(8), 675–683. https://doi.org/10.1007/s00406-013-0392-5

Scherbaum, S., Dshemuchadse, M., & Kalis, A. (2008). Making decisions with a continuous mind. Cognitive, Affective & Behavioral Neuroscience, 8(4), 454–474. https://doi.org/10.3758/CABN.8.4.454

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593

Serra, D. (2012). Un aperçu historique de l’économie expérimentale : des origines aux évolutions récentes. Revue D’économie Politique, 122(5), 749. https://doi.org/10.3917/redp.225.0749

Sharp, C., Monterosso, J., & Montague, P. R. (2012). Neuroeconomics: a bridge for translational research. Biological Psychiatry, 72(2), 87–92. https://doi.org/10.1016/j.biopsych.2012.02.029

Shizgal, P. (2012). Scarce means with alternative uses: robbins’ definition of economics and its extension to the behavioral and neurobiological study of animal decision making. Frontiers in Neuroscience, 6, 20. https://doi.org/10.3389/fnins.2012.00020

Smith, A. C., Frank, L. M., Wirth, S., Yanike, M., Hu, D., Kubota, Y., Graybiel, A. M., Suzuki, W. A., & Brown, E. N. (2004). Dynamic analysis of learning in behavioral experiments. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(2), 447–461. https://doi.org/10.1523/JNEUROSCI.2908-03.2004

Sonuga-Barke, E. J. S., Cortese, S., Fairchild, G., & Stringaris, A. (2016). Annual Research Review: Transdiagnostic neuroscience of child and adolescent mental disorders--differentiating decision making in attention-deficit/hyperactivity disorder, conduct disorder, depression, and anxiety. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 57(3), 321–349. https://doi.org/10.1111/jcpp.12496

Trepel, C., Fox, C. R., & Poldrack, R. A. (2005). Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk. Brain Research. Cognitive Brain Research, 23(1), 34–50. https://doi.org/10.1016/j.cogbrainres.2005.01.016

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124

Volk, S., & Köhler, T. (2012). Brains and Games: Applying Neuroeconomics to Organizational Research. Organizational Research Methods, 15(4), 522–552. https://doi.org/10.1177/1094428112449656

Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, Affective & Behavioral Neuroscience, 15(2), 395–415. https://doi.org/10.3758/s13415-015-0334-y

Wilson, A. G., Franck, C. T., Mueller, E. T., Landes, R. D., Kowal, B. P., Yi, R., & Bickel, W. K. (2015). Predictors of delay discounting among smokers: education level and a Utility Measure of Cigarette Reinforcement Efficacy are better predictors than demographics, smoking characteristics, executive functioning, impulsivity, or time perception. Addictive Behaviors, 45, 124–133. https://doi.org/10.1016/j.addbeh.2015.01.027

Yu, R., & Zhou, X. (2007). Neuroeconomics: Opening the “black box” behind the economic behavior. Chinese Science Bulletin = Kexue Tongbao, 52(9), 1153–1161. https://doi.org/10.1007/s11434-007-0193-1

Zuluaga, M., Robledo, S., Osorio-Zuluaga, G. A., Yathe, L., Gonzalez, D., & Taborda, G. (2016). Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el análisis de referencias. Nova, 14(25), 121. https://doi.org/10.22490/24629448.1735

Zupic, I., & Čater, T. (2015) ‘Bibliometric Methods in Management and Organization’, Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.