Biodegradación de policloruro de vinilo por Mucor s.p. y Penicillium s.p. aislados de suelo
DOI:
https://doi.org/10.19053/20278306.v11.n2.2021.12763Palabras clave:
Penicillium expansum;, Mucor sp;, PVC;, aislamientos fúngicos;, curvas de crecimientoResumen
El PVC es uno de los plásticos más usados y de los que más residuos se producen. En los últimos años, se han reportado microorganismos capaces de degradarlo y que en su mayoría provienen de ambientes en los que se acumula. El objetivo de este trabajo fue estudiar la degradación del PVC sin plastificante, a partir de hongos aislados de una muestra de suelo contaminada con resina de PVC. Los hongos se aislaron y caracterizaron morfológicamente, obteniendo 30 aislamientos de los que se escogieron 8 para someterlos a pruebas preliminares, en un medio cuya única fuente de carbono era una película de PVC. Se hicieron curvas de crecimiento de los dos aislamientos con mejores resultados, y su identificación molecular mostró que correspondían a Penicillium sp. y Mucor sp.. Este último ganó biomasa a partir del PVC y en los dos casos, las películas mostraron cambios visibles, que fueron respaldados por espectros de infrarrojo. Aunque los resultados mostrados en este artículo son preliminares, abren la puerta a nuevas formas de degradación de los residuos de PVC, que son muy persistentes.
Descargas
Citas
Ali, M. I., Ahmed, S., Robson, G., Javed, I., Ali, N., Atiq, N., & Hameed, A. (2014). Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Journal of Basic Microbiology, 54(1), 18–27. https://doi.org/10.1002/jobm.201200496
Barnett, H., & Hunter, B. (1972). Illustrated genera of imperfect fungi (Third). Minneapolis: Burgess Publishing Company.
Bergmann, M., Mützel, S., Primpke, S., Tekman, M. B., Trachsel, J., & Gerdts, G. (2019). White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances, 5(8), 1–10. https://doi.org/10.1126/sciadv.aax1157
De Campos, A., & Martins Franchetti, S. M. (2005). Biotreatment effects in films and blends of PVC/PCL previously treated with heat. Brazilian Archives of Biology and Technology, 48(2), 235–243. https://doi.org/10.1590/s1516-89132005000200010
Domsch, K. Gams, W. & Anderson, T. (1980) Compendium of soil fungi, 1, Academic Press London Ltd. London, United Kingdom.
Felsentein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39 (4), 783–791. https://doi.org/10.2307/2408678
Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N., & Fava, F. (2020). Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Marine Environmental Research, 158. https://doi.org/10.1016/j.marenvres.2020.104949
Grisa, A. M. C., Simioni, T., Cardoso, V., Zeni, M., Brandalise, R. N., & Zoppas, B. C. D. A. (2011). Degradação biológica do PVC em aterro sanitário e avaliação microbiológica. Polimeros, 21(3), 210–216. https://doi.org/10.1590/S0104-14282011005000046
Gu, J.-D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. International Biodeterioration and Biodegradation, 52, 69–91. https://doi.org/10.1016/S0964-8305(02)00177-4
Hamzah, A., Manikan, V., & Abd Aziz, N. A. F. (2017). Biodegradation of tapis crude oil using consortium of bacteria and fungi: Optimization of crude oil concentration and duration of incubation by response surface methodology. Sains Malaysiana, 46(1), 43–50. https://doi.org/10.17576/jsm-2017-4601-06
Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9, 177. http://dx.doi.org/10.1038/nrmicro2519
Kaczmarek, H., & Bajer, K. (2007). Biodegradation of Plasticized Poly (Vinyl Chloride) Containing Cellulose. Journal of Polymer Science, 45, 903–919. https://doi.org/10.1002/polb
Klrbas, Z., Keskin, N., & Güner, A. (1999). Biodegradation of Polyvinylchloride (PVC) by White Rot Fungi. Bull. Environ. Contam. Toxicol, 63, 335–342. https://doi.org/10.1007/s001289900985
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., & Nava-Saucedo, J. E. (2008). Polymer biodegradation: Mechanisms and estimation techniques - A review. Chemosphere, 73(4), 429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064
Pacasa-quisbert, F., Loza-murguia, M., Bonifacio-flores, A., Vino-nina, L., & Serrano-canaviri, T. (2017). Comunidad de hongos filamentosos en suelos del Agroecosistema de K’iphak’iphani, Comunidad Choquenaira-Viacha. Selva Andina Research Society, 8 (1), 2–25. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2072-92942017000100002
Park, E. J., Park, B. C., Kim, Y. J., Canlier, A., & Hwang, T. S. (2018). Elimination and substitution compete during amination of poly(vinyl chloride) with ehtylenediamine: XPS analysis and approach of active site index. Macromolecular Research, 26 (10), 913–923. https://doi.org/10.1007/s13233-018-6123-z
Raddadi, N., & Fava, F. (2019). Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation. Science of the Total Environment, 679, 148–158. https://doi.org/10.1016/j.scitotenv.2019.04.419
Sánchez, C. (2020). Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnology Advances, 40. https://doi.org/10.1016/j.biotechadv.2019.107501
Sumathi, T., Viswanath, B., Lakshmi, A. S., & Saigopal, D. V. R. (2016). Production of laccase by Cochliobolus sp. Isolated low molecular weight PVC. Biochemistry Research International, 2016, 1–10. https://doi.org/http://dx.doi.org/10.1155/2016/9519527
Vivi, V. K., Martins-Franchetti, S. M., & Attili-Angelis, D. (2019). Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiologica, 64, 1-7. https://doi.org/10.1007/s12223-018-0621-4
Vrabl, P., Schinagl, C. W., Artmann, D. J., Heiss, B., & Burgstaller, W. (2019). Fungal Growth in Batch Culture – What We Could Benefit If We Start Looking Closer. Frontiers in Microbiology, 10(October), 1–11. https://doi.org/10.3389/fmicb.2019.02391
Webb, J. S., Nixon, M., Eastwood, I. M., Greenhalgh, M., Robson, G. D., & Handley, P. S. (2000). Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Applied and Environmental Microbiology, 66(8), 3194–3200. https://doi.org/10.1128/AEM.66.8.3194-3200.2000
White, T., Burns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols. A guide to methods and applications 18, 315–322). San Diego, Calif.: Academic Press Inc.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los artículos aquí publicados están protegidos bajo una licencia Licencia Creative Commons Atribución 4.0 Internacional. El contenido de los artículos es responsabilidad de cada autor y no compromete, de ninguna manera, a la revista o a la institución. Se permite la divulgación y reproducción de títulos, resúmenes y contenido total, con fines académicos, científicos, culturales y/o comerciales, siempre y cuando se cite la respectiva fuente.