Tendencias y áreas emergentes en la investigación científica sobre hidroeléctricas: un análisis bibliométrico (2014-2023)

Resumen
El objetivo del artículo es analizar las tendencias y áreas emergentes en la investigación científica sobre los impactos ambientales de las hidroeléctricas, mediante un análisis bibliométrico de la literatura publicada entre 2014 y 2023. Los resultados evidencian un notable incremento en la producción científica sobre hidroeléctricas a partir de 2020, con China y Estados Unidos como los países más productivos. Se destaca la centralidad de temas como el cambio climático y la sostenibilidad, con énfasis en los impactos acumulativos de las pequeñas hidroeléctricas, especialmente en la región amazónica. El mapa temático identifica la energía renovable y el desarrollo sostenible como áreas prioritarias para futuras investigaciones, mientras que la participación comunitaria y el aprendizaje automático surgen como campos prometedores que requieren mayor profundización. Lo anterior significa una mayor disponibilidad de datos y conocimientos para los formuladores de políticas y gestores ambientales, facilitando la implementación de estrategias de gestión más informadas y sostenibles.
Palabras clave
hidroeléctricas, energía renovable, percepción comunitaria, cambio climático
Biografía del autor/a
Esther Julia Olaya-Marín
Ingeniera Agroecóloga, Doctora en Ingeniería del Agua y Medio Ambiente
Lizeth Juliana Bolaños-Rodríguez
Psicóloga.
Citas
- Alseny, C., Diallo, M. L., Bayo, I., & L Keita, M. (2023). Impact of Climate Change in the Area Where the Kaleta Hydroelectric Power Plant is Implemented. International Journal of Science and Research (IJSR), 12(10). https://doi.org/10.21275/sr231015092301
- Bernard, E., Penna, L. A. O., & Araújo, E. (2014). Downgrading, downsizing, degazettement, and reclassification of protected areas in Brazil. Conservation Biology, 28(4). https://doi.org/10.1111/cobi.12298
- Carvalho, D. R., & Araújo, F. G. (2024). Heterogenisation of riverine ichthyofauna diversity by small hydropower dams. Ecology of Freshwater Fish, 33(3). https://doi.org/10.1111/eff.12775
- Cesoniene, L., Dapkiene, M., & Punys, P. (2021). Assessment of the impact of small hydropower plants on the ecological status indicators ofwater bodies: A case study in lithuania. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040433
- Flecker, A., Shi, Q., Almeida, R., Angarita, H., Gomes Selman, J., Garcia-Villacorta, R., Sethi, S., Thomas, S., Poff, N., Forsberg, B., Heilpern, S., Hamilton, S., Abad, J., Anderson, E., Barros, N., Bernal, I., Bernstein, R., Cañas, C., Dangles, O., & Gomes, C. (2022). Reducing adverse impacts of Amazon hydropower expansion. Science, 375, 753–760. https://doi.org/10.1126/science.abj4017
- Freitas, C. E., de Almeida Mereles, M., Pereira, D. V., Siqueira-Souza, F., Hurd, L., Kahn, J., Morais, G., & Sousa, R. G. C. (2022). Death by a thousand cuts: Small local dams can produce large regional impacts in the Brazilian Legal Amazon. Environmental Science and Policy, 136, 447–452. https://doi.org/10.1016/j.envsci.2022.07.013
- Huang, J., Guo, F., Burford, M. A., Kainz, M., Li, F., Gao, W., Ouyang, X., & Zhang, Y. (2024). How do small dams alter river food webs? A food quality perspective along the aquatic food web continuum. Journal of Environmental Management, 355. https://doi.org/10.1016/j.jenvman.2024.120501
- Jean Claude, Dr. M. (2022). Assessment of Effect of Hydropower Plant Projects on Socio-Environmental Sustenance and Development in Rwanda: A Review Done At Rubagabaga Hydropower Ltd. International Journal of Scientific Research and Management, 10(01). https://doi.org/10.18535/ijsrm/v10i1.em7
- Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D., & Garrote, L. (2021). Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition. In Renewable and Sustainable Energy Reviews (Vol. 142). https://doi.org/10.1016/j.rser.2021.110833
- Luo, Q., Li, S., Kinouchi, T., Wu, N., Fu, X., Ling, C., Cai, Q., Chiu, M.-C., & Resh, V. H. (2024). Existing levels of biodiversity and river location may determine changes from small hydropower developments. Journal of Environmental Management, 357, 120697. https://doi.org/https://doi.org/10.1016/j.jenvman.2024.120697
- Mayer, A., Lopez, M. C., Leturcq, G., & Moran, E. (2022). Changes in Social Capital Associated with the Construction of the Belo Monte Dam: Comparing a Resettled and a Host Community. Human Organization, 81(1). https://doi.org/10.17730/1938-3525-81.1.22
- Moldoveanu, M., Stănescu, S. V., & Gălie, A. C. (2023). Post-Construction, Hydromorphological Cumulative Impact Assessment: An Approach at the Waterbody Level Integrating Different Spatial Scales. Water (Switzerland), 15(3). https://doi.org/10.3390/w15030382
- Nava, F. R., Ishihara, J. H., Ravena, N., & Vilhena, K. do S. de S. (2021). Lack of knowledge or neglect? The contributions of science to mitigating the risks of small Brazilian dams. International Journal of Disaster Risk Reduction, 60. https://doi.org/10.1016/j.ijdrr.2021.102269
- Nickerson, S., Chen, G., Fearnside, P. M., Allan, C. J., Hu, T., de Carvalho, L. M. T., & Zhao, K. (2022). Forest loss is significantly higher near clustered small dams than single large dams per megawatt of hydroelectricity installed in the Brazilian Amazon. Environmental Research Letters, 17(8). https://doi.org/10.1088/1748-9326/ac8236
- Niță, M. R., Mitincu, C. G., & Nita, A. (2023). A river runs through it? Exploring the contestation of Environmental Impact Assessment procedures for small hydropower projects. Energy Research and Social Science, 96. https://doi.org/10.1016/j.erss.2023.102943
- Olaya-Marín, E.-J., Lemus-Portillo, C., Echavarría-Pedraza, M.-C., Chaparro-García, O.-A., Roa-Fuentes, C.-A., Salazar-Galán, S., & Barrios-Peña, M. (2022). Diferencias en el tamaño corporal y la abundancia de peces altoandinos, arriba y abajo de la represa Neusa, Colombia. Revista de Biología Tropical, 70(1), 464–481. https://doi.org/10.15517/REV.BIOL.TROP.2022.49776
- Premalatha, M., Tabassum-Abbasi, Abbasi, T., & Abbasi, S. A. (2014). A critical view on the eco-friendliness of small hydroelectric installations. Science of the Total Environment, 481(1). https://doi.org/10.1016/j.scitotenv.2013.11.047
- Qurani, A., & Adnan, R. (2023). The Role of Local Community and The Barriers to Participation in A Mini Hydro Energy Project in Indonesia. Indonesian Journal of Social Research (IJSR), 5(2). https://doi.org/10.30997/ijsr.v5i2.300
- Sun, S. (2023). Development of Hydropower and the Environmental Impacts of Hydroelectric Dam Construction in China. E3S Web of Conferences, 393. https://doi.org/10.1051/e3sconf/202339301032
- Ullah, A., Altay Topcu, B., Dogan, M., & Imran, M. (2024). Exploring the nexus among hydroelectric power generation, financial development, and economic growth: Evidence from the largest 10 hydroelectric power-generating countries. Energy Strategy Reviews, 52. https://doi.org/10.1016/j.esr.2024.101339
- Zhao, Z., Gong, X., Zhang, L., Jin, M., Cai, Y., & Wang, X. (2021). Riverine transport and water-sediment exchange of polycyclic aromatic hydrocarbons (PAHs) along the middle-lower Yangtze River, China. Journal of Hazardous Materials, 403. https://doi.org/10.1016/j.jhazmat.2020.123973
- Zhou, Y., Miao, Z., & Urban, F. (2020). China’s leadership in the hydropower sector: identifying green windows of opportunity for technological catch-up. Industrial and Corporate Change, 29(5), 1319–1343. https://doi.org/10.1093/icc/dtaa039
- Zhu, D., Yang, Z., Chen, X., Jin, Y., & Li, D. (2023). Development of a biotic integrity index based on long-term fish assemblage changes after dam construction in China. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1103801