Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Intercambio gaseoso y fluorescencia de la clorofila en menta (Mentha spicata L.) influenciados por la nutrición mineral

Dark-adapted leaf. Photo: L.E. Cano-Gallego

Resumen

La producción de menta con calidad de exportación es limitada en Colombia, debido a los bajos volúmenes de producción, el poco cumplimiento de buenas prácticas agrícolas, la disponibilidad de nutrientes y el manejo de la fertilización. Este estudio tuvo como objetivo identificar cómo la fertilización NPK influye en la fotosíntesis y la fotoquímica de la menta, durante el crecimiento vegetativo. En casa malla, se evaluaron dosis crecientes de una fertilización química a partir de la fórmula 10-30-10 (NPK) en las cantidades de 0, 60, 90, 120 y 180 kg ha-1. Las variables estimadas fueron fotosíntesis neta (A), transpiración (E), conductancia estomática (gs), temperatura de la hoja (Thoja), rendimiento cuántico (Qy), desactivación no fotoquímica (NPQ), desactivación química (qP) y materia seca (Dm). Los mayores valores A, Qy, E y gs se presentaron en plantas tratadas con altas dosis de NPK; mientras que el NPQ y el qP aumentaron en las plantas con bajas dosis de NPK. Nuestros hallazgos proveen bases a cerca de la influencia del NPK sobre la fotosíntesis y otros parámetros fisiológicos, con relación al crecimiento y desarrollo de la menta.

Palabras clave

Lamiaceae, Plantas aromáticas, Nutrición vegetal, Hierbas perennes

PDF (English)

Referencias

  • Agronet. 2021. Estadísticas Agropecuarias - Agrícola. In: https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1; Consulted: September, 2021.
  • Battie-Laclau, P., J.-P. Laclau, C. Beri, L. Mietton, M.R.A. Muniz, B.C. Arenque, M.C. Piccolo, L. Jordan-Meille, J.-P. Bouillet, and Y. Nouvellon. 2014. Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ. 37, 70-81. Doi: 10.1111/pce.12131
  • Brown, B., J.M. Hart, M.P. Wescott, and N.W. Christensen. 2003. The critical role of nutrient management in mint production. Better Crops 87(4), 9-11.
  • Carstensen, A., A.E. Szameitat, J. Frydenvang, and S. Husted. 2019. Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). Plant Soil 434(1), 79-91. Doi: 10.1007/s11104-018-3783-6
  • Cendrero-Mateo, M.P., A.E. Carmo-Silva, A. Porcar-Castell, E.P. Hamerlynck, S.A. Papuga, and M.S. Moran. 2015. Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability. Funct. Plant Biol. 42(8), 746-757. Doi: 10.1071/FP15002
  • Cirlini, M., P. Mena, M. Tassotti, K.A. Herrlinger, K.M. Nieman, C. Dall’Asta, and D. Del Rio. 2016. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 21(8), 1007. Doi: 10.3390/molecules21081007
  • Chen, C.-T., C.-L. Lee, and D.-M. Yeh. 2018. Effects of nitrogen, phosphorus, potassium, calcium, or magnesium deficiency on growth and photosynthesis of Eustoma. HortScience 53(6), 795-798. Doi: 10.21273/HORTSCI12947-18
  • Chrysargyris, A., E. Nikolaidou, A. Stamatakis, and N. Tzortzakis. 2017. Vegetative, physiological, nutritional and antioxidant behavior of spearmint (Mentha spicata L.) in response to different nitrogen supply in hydroponics. J. Appl. Res. Med. Aromat. Plants 6, 52-61. Doi: 10.1016/j.jarmap.2017.01.006
  • Chrysargyris, A., S.A. Petropoulos, Â Fernandes, L. Barros, N. Tzortzakis, and I.C.F.R. Ferreira. 2019b. Effect of phosphorus application rate on Mentha spicata L. grown in deep flow technique (DFT). Food Chem. 276, 84-92. Doi: 10.1016/j.foodchem.2018.10.020
  • Chrysargyris, A., M. Solomou, S.A. Petropoulos, and N. Tzortzakis. 2019a. Physiological and biochemical attributes of Mentha spicata when subjected to saline conditions and cation foliar application. J. Plant Physiol. 232, 27-38. Doi: 10.1016/j.jplph.2018.10.024
  • DaMatta, F.M., R.A. Loos, E.A. Silva, and M.E. Loureiro. 2002. Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. J. Plant Physiol. 159, 975-981. Doi: 10.1078/0176-1617-00807
  • De Angeli, A., D. Monachello, G. Ephritikhine, J.M. Frachisse, S. Thomine, F. Gambale, and H. Barbier-Brygoo. 2006. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442, 939-942. Doi: 10.1038/nature05013
  • Demmig-Adams, B., S.-C. Koh, C.M. Cohu, O. Muller, J.J. Stewart, and W.W. Adams III. 2014. Non-photochemical fluorescence quenching in contrasting plant species and environments. pp. 531-552. In: Demmig-Adams, B., G. Garab, W. Adams III, and Govindjee (eds.). Non-Photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Springer, Dordrecht, The Netherlands. Doi: 10.1007/978-94-017-9032-1_24
  • Du, Q., X.-H. Zhao, L. Xia, C.J. Jiang, X.G. Wang, Y. Han, J. Wang, and H.-Q. Yu. 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). J. Integr. Agric. 18(2), 395-406. Doi: 10.1016/S2095-3119(18)61953-7
  • Engels, C., E. Kirkby, and P. White. 2012. Mineral nutrition, yield and source: sink relationships. pp. 85-133. In: Marschner, P. (ed.). Marschner’s mineral nutrition of higher plants. Elsevier, London. Doi: 10.1016/B978-0-12-384905-2.00005-4
  • Frydenvang, J., M. van Maarschalkerweerd, A. Carstensen, S. Mundus, S.B. Schmidt, P.R. Pedas, K.H. Laursen, J.K. Schjoerring, and S. Husted. 2015. Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence. Plant Physiol. 169(1), 353-361. Doi: 10.1104/pp.15.00823
  • Gerardeaux, E., L. Jordan-Meille, and S. Pellerin. 2009. Radiation interception and conversion to biomass in two potassium-deficient cotton crops in South Benin. J. Agric. Sci. 147(2), 155-168. Doi: 10.1017/S0021859608008381
  • Guidi, L., E. Lo Piccolo, and M. Landi. 2019. Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 10, 174. Doi: 10.3389/fpls.2019.00174
  • Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I.S. Møller, and P. White. 2012. Functions of macronutrients. pp. 135-189. In: Marschner, P. (ed.). Marschner’s mineral nutrition of higher plants. 3rd ed. Elsevier, London. Doi: 10.1016/B978-0-12-384905-2.00006-6
  • Hernández, I. and S. Munné-Bosch. 2015. Linking phosphorus availability with photo-oxidative stress in plants. J. Exp. Bot. 66, 2889-2900. Doi: 10.1093/jxb/erv056
  • Hou, W., J. Yan, B. Jákli, J. Lu, T. Ren, R. Cong, and X. Li. 2018. Synergistic effects of nitrogen and potassium on quantitative limitations to photosynthesis in rice (Oryza sativa L.). J. Agric. Food Chem. 66(20), 5125-5132. Doi: 10.1021/acs.jafc.8b01135
  • Hu, W., T. Ren, F. Meng, R. Cong, X. Li, P.J. White, and J. Lu. 2019. Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coordination of CO2 diffusion and carboxylation. Physiol. Plant. 167(3), 418-432. Doi: 10.1111/ppl.12919
  • Huang, Z.A., D.A. Jiang, Y. Yang, J.W. Sun, and S.H. Jin. 2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42(3), 357-364. Doi: 10.1023/B:PHOT.0000046153.08935.4c
  • Hubbart, S., I.R.A. Smillie, M. Heatle, R. Swarup, C.C. Foo, L. Zhao, and E.H. Murchie. 2018. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun. Biol. 1, 22. Doi: 10.1038/s42003-018-0026-6
  • Jin, S.H., J.Q. Huang, X.Q. Li, B.S. Zheng, J.S. Wu, Z.J. Wang, G.H. Liu, and M. Chen. 2011. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol. 31, 1142-1151. Doi: 10.1093/treephys/tpr095
  • Kalaji, H.M., A. Jajoo, A. Oukarroum, M. Brestic, M. Zivcak, I.A. Samborska, M.D. Cetner, I. Łukasik, V. Goltsev, and R.J. Ladle. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant 38(4), 102. Doi: 10.1007/s11738-016-2113-y
  • Karkanis, A., C. Lykas, V. Liava, A. Bezou, S. Petropoulos, and N. Tsiropoulos. 2017. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: effects on biomass and essential oil yield. J. Sci. Food Agric 98(1), 43-50. Doi: 10.1002/jsfa.8435
  • Kromdijk, J., K. Głowacka, L. Leonelli, S.T. Gabilly, M. Iwai, K.K. Niyogi, and S.P. Long. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314), 857-861. Doi: 10.1126/science.aai8878
  • Lima, J.D., P.R. Mosquim, and F.M. Da Matta. 1999. Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency. Photosynthetica 36(1), 113-121. Doi: 10.1023/A:1007079215683
  • Lu, Z., J. Lu, Y. Pan, P. Lu, X. Li, R. Cong, and T. Ren. 2016. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. Plant Cell Environ. 39(11), 2428-2439. Doi: 10.1111/pce.12795
  • Lu, C. and J. Zhang. 2000. Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Sci. 151(2), 135-143. Doi: 10.1016/S0168-9452(99)00207-1
  • Malhotra, H., Vandana, S. Sharma, and R. Pandey. 2018. Phosphorus nutrition: plant growth in response to deficiency and excess. pp. 171-190. In: Hasanuzzaman, M., M. Fujita, H. Oku, K. Nahar, and B. Hawrylak-Nowak (eds.). Plant nutrients and abiotic stress tolerance. Springer, Singapore. Doi: 10.1007/978-981-10-9044-8_7
  • Martineau, E., J.-C. Domec, A. Bosc, M. Dannoura, Y. Gibon, C. Bénard, and L. Jordan-Meille. 2017. The role of potassium on maize leaf carbon exportation under drought condition. Acta Physiol. Plant. 39, 219. Doi: 10.1007/s11738-017-2515-5
  • Mu, X. and Y. Chen. 2021. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 158, 76-82. Doi: 10.1016/j.plaphy.2020.11.019
  • Mu, X., Q. Chen, X. Wu, F. Chen, L. Yuan, and G. Mi. 2018. Gibberellins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf under low nitrogen supply. Environ. Exp. Bot. 150, 198-208. Doi: 10.1016/j.envexpbot.2018.03.012
  • Muñoz-Huerta, R.F., R.G. Guevara-Gonzalez, L.M. Contreras-Medina, I. Torres-Pacheco, J. Prado-Olivarez, and R.V. Ocampo-Velazquez. 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13(8), 10823-10843. Doi: 10.3390/s130810823
  • Murchie, E.H. and A.V. Ruban. 2020. Dynamic non‐photochemical quenching in plants: from molecular mechanism to productivity. Plant J. 101(4), 885-896. Doi: 10.1111/tpj.14601
  • Oosterhuis, D.M., D.A. Loka and T.B. Raper. 2013. Potassium and stress alleviation: Physiological functions and management of cotton. J. Plant Nutr. Soil Sci. 176(3), 331-343. Doi: 10.1002/jpln.201200414
  • Pan, Y., Z. Lu, J. Lu, X. Li, R. Cong, and T. Ren. 2017. Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiol Biochem. 113, 110-121. Doi: 10.1016/j.plaphy.2017.01.027
  • Pandey, R., G. Zinta, H. AbdElgawad, A. Ahmad, V. Jain, and I.A. Janssens. 2015. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol. Adv. 33(3-4), 303-316. Doi: 10.1016/j.biotechadv.2015.03.011
  • Pantin, F., T. Simonneau, G. Rolland, M. Dauzat, and B. Muller. 2011. Control of leaf expansion: A developmental switch from metabolics to hydraulics. Plant Physiol. 156(2), 803-815. Doi: 10.1104/pp.111.176289
  • Parkash, V. and S. Singh. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12(10), 3945. Doi: 10.3390/su12103945
  • Pedraza, R. and M.C. Henao. 2008. Composición del tejido vegetal y su relación con variables de crecimiento y niveles de nutrientes en el suelo en cultivos comerciales de menta (Mentha spicata L.). Agron. Colomb. 26(2), 186-196.
  • Qiu, J. and D.W. Israel. 1994. Carbohydrate accumulation and utilization in soybean plants in response to altered phosphorus nutrition. Physiol. Plant. 90(4), 722-728. Doi: 10.1111/j.1399-3054.1994.tb02529.x
  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna.
  • Rodríguez Torressi, A.O., M. Yonni, M. Nazareno, C.R. Galmarini, and C.A. Bouzo. 2015. Eficiencia fotoquímica máxima e índice de potencial fotosintético en plantas de melón (Cucumis melo) tratadas con bajas temperaturas. FAVE, Secc. Cienc. Agrar. 13, 1-2. Doi: 10.14409/fa.v13i1/2.4966
  • Roveda-Hoyos, G. and L. Moreno-Fonseca. 2019. Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency. Agron. Colomb. 37(1), 3-11. Doi: 10.15446/agron.colomb.v37n1.65610
  • Ruban, A.V. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170(4), 1903-1916. Doi: 10.1104/pp.15.01935
  • Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortic. 13(3), 325-335. Doi: 10.17584/rcch. 2019v13i3.100171
  • Schlüter, U., C. Colmsee, U. Scholz, A. Brӓutigam, A.P.M. Weber, N. Zellerhoff, M. Bucher, H. Fahnenstich, and U. Sonnewald. 2013. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 14(1), 442. Doi: 10.1186/1471-2164-14-442
  • Singh, P., A. Misra, and N.K. Srivastava. 2001. Influence of Mn deficiency on growth, chlorophyll content, physiology, and essential monoterpene oil (s) in genotypes of spearmint (Mentha spicata L.). Photosynthetica 39(3), 473-476. Doi: 10.1023/A:1015107116205
  • Smethurst, C.F., T. Garnett, and S. Shabala. 2005. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270(1), 31-45. Doi: 10.1007/s11104-004-1082-x
  • Tewari, R.K., P. Kumar, and P.N. Sharma. 2007. Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. J. Integr. Plant Biol. 49(3), 313-322. Doi: 10.1111/j.1744-7909.2007.00358.x
  • Tighe-Neira, R., M. Alberdi, P. Arce-Johnson, J. Romero, M. Reyes-Díaz, Z. Rengel, and C. Inostroza-Blancheteau. 2018. Role of potassium in governing photosynthetic processes and plant yield. pp. 191-203. In: Hasanuzzaman, M., M. Fujita, H. Oku, K. Nahar, and B. Hawrylak-Nowak (eds.). Plant nutrients and abiotic stress tolerance. Springer, Singapore. Doi: 10.1007/978-981-10-9044-8_8
  • Timlin, D.J., T.C.M. Naidu, D.H. Fleisher, and V.R. Reddy. 2017. Quantitative effects of phosphorus on maize canopy photosynthesis and biomass. Crop Sci. 57(6), 3156-3169. Doi: 10.2135/cropsci2016.11.0970
  • Tremblay, N., Z. Wang, and Z.G. Cerovic. 2012. Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. Dev. 32, 451-464. Doi: 10.1007/s13593-011-0041-1
  • Walker, A.P., A.P. Beckerman, L. Gu, J. Kattge, L.A. Cernusak, T.F. Domingues, J.C. Scales, G. Wohlfahrt, S.D. Wullschleger, and F.I. Woodward. 2014. The relationship of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta‐analysis and modeling study. Ecol. Evol. 4(16), 3218-3235. Doi: 10.1002/ece3.1173
  • Wang, X., L. Wang, and Z. Shangguan. 2016. Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply. PLoS One 11(11), e0165733. Doi: 10.1371/journal.pone.0165733
  • Wang, X.-G., X.-H. Zhao, C.-J. Jiang, C.-H. Li, S. Cong, D. Wu, Y.-Q. Chen, H.-Q. Yu, and C.-Y. Wang. 2015. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J. Integr. Agric. 14(5), 856-863. Doi: 10.1016/S2095-3119(14)60848-0
  • Wikifarmer. 2021. Información sobre la planta de menta. In: https://wikifarmer.com/es/; consulted: September, 2021.
  • Xie, K., Z. Lu, Y. Pan, L. Gao, P. Hu, M. Wang, and S. Guo. 2020. Leaf photosynthesis is mediated by the coordination of nitrogen and potassium: the importance of anatomical-determined mesophyll conductance to CO2 and carboxylation capacity. Plant Sci. 290, 110267. Doi: 10.1016/j.plantsci.2019.110267
  • Xu, H.X., X.Y. Weng, and Y. Yan. 2007. Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russ. J. Plant Physiol. 54, 741-748. Doi: 10.1134/S1021443707060040
  • Ye, Z., J. Zeng, X. Li, F. Zeng, and G. Zhang. 2017. Physiological characterizations of three barley genotypes in response to low potassium stress. Acta Physiol. Plant. 39, 232. Doi: 10.1007/s11738-017-2516-4
  • Zhao, X., Q. Du, Y. Zhao, H. Wang, Y. Li, X. Wang, and H. Yu. 2016. Effects of different potassium stress on leaf photosynthesis and chlorophyll fluorescence in maize (Zea mays L.) at seedling stage. Agric. Sci. 7(1), 44-53. Doi: 10.4236/as.2016.71005

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

<< < 1 2 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.