Skip to main navigation menu Skip to main content Skip to site footer

Liming applications and the SPAD chlorophyll index and stomatal conductance in cocoa exposed to cadmium in the soil

Cacao clon CCN-51. Photo: C.S. Castañeda-Serrano

Abstract

Cadmium is a heavy metal that affects cell structures, such as walls and membranes, especially in the photosynthetic apparatus (PSII), chlorophylls, chloroplasts and stomata, producing losses in production quantity and quality. In addition, it is harmful to the health of humans and animals. The objective was to analyze the behavior of the relative chlorophyll index (SPAD units) and stomatal conductance in clone CCN-51 cacao plants every 45 days (45, 90, 135 and 180 days) after liming application. Four doses of a dolomite + agricultural gypsum mixture were applied, increasing Ca+2 saturation in the soil to 7, 8 and 9 cmolc kg-1. The control treatment did not have applications. The results indicated a reduction in SPAD units in the plants without liming, with high cadmium levels in the soil (3.3 mg kg-1), and there were no statistical differences in the other treatments, possibly because of edaphic factors such as pH, organic matter content and Al+3. The best stomatal conductance was observed with 7 cmolc kg-1 in the foliar gas exchange. Supersaturated liming applications efficiently reduce the losses in quality and quantity caused by the accumulation of cadmium in cacao plants.

Keywords

Heavy metals, Soil amendments, Transpiration, Pigments, Theobroma cacao L.

PDF

References

  • Argüello, D., E. Chavez, F. Lauryssen, R. Vanderschueren, E. Smolders, and D. Montalvo. 2018. Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Sci. Total Environ. 649, 120-127. Doi: https://doi.org/10.1016/j.scitotenv.2018.08.292
  • Barraza, F., E. Schreck, T. Lévêque, G. Uzu, F. López, J. Ruales, J. Prunier, A. Marquet, and L. Maurice. 2017. Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environ. Pollut. 229, 950-963. Doi: https://doi.org/10.1016/j.envpol.2017.07.080
  • Bayona-Penagos, L.V. 2020. Efecto y mitigación de la toxicidad por arsénico y cadmio en cultivo de arroz. Rev. Cienc. Agropec. 6(2), 49-70.
  • Cao, Z.-Z., M.L. Qin, X.Y. Lin, Z.-W. Zhu, and M.-X. Chen. 2018. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Environ. Pollut. 238, 76-84. Doi: https://doi.org/10.1016/j.envpol.2018.02.083
  • Castro, A.V., A.-A.F. Almeida, C.P. Pirovani, G.S.M. Reis, N.M. Almeida, and P.A.O. Mangabeira. 2015. Morphological, biochemical, molecular and ultrastructural changes induced by Cd toxicity in seedlings of Theobroma cacao L. Ecotoxicol. Environ. Saf. 115, 174-186. Doi: https://doi.org/10.1016/j.ecoenv.2015.02.003
  • Choudhury, M.R., J. Christopher, S. Das, A. Apan, N.W. Menzies, S. Chapman, V. Mellor, and Y.P. Dang. 2022. Detection of calcium, magnesium, and chlorophyll variations of wheat genotypes on sodic soils using hyperspectral red edge parameters. Environ. Technol. Innov. 27, 102469. Doi: https://doi.org/10.1016/j.eti.2022.102469
  • Cochrane, T.T., J.G. Salinas, and P.A. Sánchez. 1980. An equation for liming acid mineral soils to compensate crop aluminum tolerance. Trop. Agric. 57(2), 133-140.
  • Dell’Amico-Rodriguez, J.M. and D.M. Morales-Guevara. 2017. Comportamiento de la conductancia estomática de dos variedades de tomate cubanas en condiciones de campo y riego limitado. Cult. Trop. 38(2), 137-144.
  • Espinoza Principe, B.J. 2019. Efecto del compost, dolomita y magnocal en el contenido de cadmio del suelo y los granos de cacao (Theobroma cacao L.) del clon ccn-51. Undergraduate thesis. Facultad de Agronomía, Universidad Nacional Agraria de La Selva, Tingo Maria, Peru. http://repositorio.unas.edu.pe/handle/UNAS/1492
  • European Commission. 2021. Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs. OJEU L288/13. Brussels.
  • Fernández Paz, J.A. 2022. Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.). MSc thesis. Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira, Colombia.
  • Florida Rofner, N., H. Juan, P. García, S.S. Jacobo Salinas, F. Escobar Mamani, and J. Torres García. 2019. Efecto de compost y NPK sobre los niveles de microorganismos y cadmio en suelo y almendra de cacao. Rev. Investig. Altoandin. 21(4), 264-273. Doi: https://doi.org/10.18271/RIA.2019.503
  • Guan, M.Y., H.H. Zhang, W. Pan, C.W. Jin, and X.Y. Lin. 2018. Sulfide alleviates cadmium toxicity in Arabidopsis plants by altering the chemical form and the subcellular distribution of cadmium. Sci. Total Environ. 627, 663-670. Doi: https://doi.org/10.1016/J.SCITOTENV.2018.01.245
  • Hakeem, K.R., H.F. Alharby, and T.B. Pirzadah. 2022. Exogenously applied calcium regulates antioxidative system and reduces cadmium-uptake in Fagopyrum esculentum. Plant Physiol. Biochem. 180, 17-26. Doi: https://doi.org/10.1016/J.PLAPHY.2022.03.011
  • He, L.-L., D.Y. Huang, Q. Zhang, H.-H. Zhu, C. Xu, B. Li, and Q.-H. Zhu. 2021. Meta-analysis of the effects of liming on soil pH and cadmium accumulation in crops. Ecotoxicol. Environ. Saf. 223, 112621. Doi: https://doi.org/10.1016/j.ecoenv.2021.112621
  • Herrera Marcano, T. 2000. La contaminación con cadmio en suelos agrícolas. Venesuelos 8(1-2), 42-47.
  • Hu, Y., H. Cheng, and S. Tao. 2016. The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ. Int. 92-93, 515-532. Doi: https://doi.org/10.1016/j.envint.2016.04.042
  • Huang, Y., H. Sheng, P. Zhou, and Y. Zhang. 2020. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming. Ecotoxicol. Environ. Saf. 188, 109903. Doi: https://doi.org/10.1016/j.ecoenv.2019.109903
  • Huang, M., H. Zhu, J. Zhang, D. Tang, X. Han, L. Chen, D. Du, J. Yao, K. Chen, and J. Sun. 2017. Toxic effects of cadmium on tall fescue and different responses of the photosynthetic activities in the photosystem electron donor and acceptor sides. Sci. Rep. 7, 14387. Doi: https://doi.org/10.1038/s41598-017-14718-w
  • Huaraca-Fernandez, J.N., L. Pérez-Sosa, L.S. Bustinza-Cabala, and N.B. Pampa-Quispe. 2020. Enmiendas orgánicas en la inmovilización de cadmio en suelos agrícolas contaminados: una revisión. Inf. Tecnol. 31(4), 139-152. Doi: https://doi.org/10.4067/S0718-07642020000400139
  • Huo, L., Z. Guo, Q. Wang, X. Jia, X. Sun, and F. Ma. 2022. The protective role of MdATG10-mediated autophagy in apple plant under cadmium stress. Ecotoxicol. Environ. Saf. 234, 113398. Doi: https://doi.org/10.1016/j.ecoenv.2022.113398
  • Incontec, Instituto Colombiano de Normas Técnicas y Certificación. 2014. NTC 3888. Gestión ambiental. Calidad del suelo extracción de elementos traza solubles en agua regia. Bogota.
  • Jácome Molina, D.M. 2017. Efecto de la inoculación de hongos formadores de micorrizas arbusculares (HFMA) sobre un sistema suelo-planta de cacao en suelos contaminados con cadmio en etapa de vivero. MSc thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota. https://repositorio.unal.edu.co/handle/unal/62938
  • Kapoor, D., S. Singh, P.C. Ramamurthy, S. Jan, S. Bhardwaj, S.S. Gill, R. Prasad, and J. Singh. 2021. Molecular consequences of cadmium toxicity and its regulatory networks in plants. Plant Gene 28, 100342. Doi: https://doi.org/10.1016/j.plgene.2021.100342
  • Li, B., L. Hou, C. Song, Z. Wang, Q. Xue, Y. Li, J. Qin, N. Cao, C. Jia, Y. Zhang, and W. Shi. 2022a. Biological function of calcium-sensing receptor (CAS) and its coupling calcium signaling in plants. Plant Physiol. Biochem. 180, 74-80. Doi: https://doi.org/10.1016/j.plaphy.2022.03.032
  • Li, J., S. Zhang, and X. Ding. 2022b. The combined application of biochar and high phosphate fertilizer promoted the mobilization and redistribution of cadmium in rhizosphere soil. J. Environ. Chem. Eng. 10(3), 107482. Doi: https://doi.org/10.1016/j.jece.2022.107482
  • Meter, A., R.J. Atkinson, and B. Laliberte. 2019. Cadmio en el cacao de América Latina y el Caribe. Análisis de la investigación y soluciones potenciales para la mitigación. Bioversity International, Roma.
  • Moreno Chacón, A.L., M. Cruz Aguilar, and L.M. Melgarejo. 2013. Respuesta fisiológica de plántulas de Avicennia germinans y Rhizophora mangle frente al cadmio. pp. 153-174. In: Melgarejo, L.M. and C.B. García Ramírez (eds.). Investigación en ciencias del mar: aportes de la
  • Universidad Nacional de Colombia. Universidad Nacional de Colombia, Bogota.
  • Motta-Delgado, P.A. and H.E. Ocaña-Martinez. 2018. Caracterización de subsistemas de pasturas braquiarias en hatos de trópico húmedo, Caquetá, Colombia. Cienc. Agric. 15(1), 81-92. Doi: https://doi.org/10.19053/01228420.v15.n1.2018.7759
  • Pérez Moncada, U.A., M. Ramìrez Gómez, D.P. Serralde Ordoñez, A.M. Peñaranda Rolón, W.A. Wilches Ortiz, L. Ramírez, and G.A. Rengifo Estrada. 2019. Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoam. 37(2), 121-130. Doi:https://doi.org/10.28940/terra.v37i2.479
  • Pino V., E., I. Montalván D., A. Vera M., L. Ramos F. 2019. La conductancia estomática y su relación con la temperatura foliar y humedad del suelo en el cultivo del olivo (Olea europaea L.), en periodo de maduración de frutos, en zonas áridas. La Yarada, Tacna, Perú. Idesia 37(4), 55-64. Doi: https://doi.org/10.4067/S0718-34292019000400055
  • Qin, S., H. Liu, Z. Nie, Z. Rengel, W. Gao, C. Li, P. Zhao. 2020. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30(2), 168-180. Doi: https://doi.org/10.1016/S1002-0160(20)60002-9
  • Rabêlo, F.H.S., G.S. Daneluzzi, F.H. Santos, M. Colzato, G.S. Montanha, L.R. Nakamura, H.W.P. Carvalho, J. Lavres, and L.R.F. Alleoni. 2022. Role of nodes in accumulation and distribution of cadmium and its relationship with nutrient distribution and photosynthesis in the growth and regrowth of Brachiaria decumbens. Environ. Exp. Bot. 195, 104794. Doi: https://doi.org/10.1016/j.envexpbot.2022.104794
  • Ramtahal, G., P. Umaharan, A. Hanuman, C. Davis, and L. Ali. 2019. The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Sci. Total Environ. 693, 133563. Doi: https://doi.org/10.1016/j.scitotenv.2019.07.369
  • Rodríguez Albarracín, H.S., A.E. Darghan Contreras, and M.C. Henao. 2019. Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Reg. 16, e00214. Doi: https://doi.org/10.1016/J.GEODRS.2019.E00214
  • Sánchez-Zepeda, M.Y., M. López-Herrera, and L. Romero-Bautista. 2021. Determinación de la capacidad de biacumulación de cadmio en Vicia faba L. y su efecto en la raíz y el crecimiento vegetativo. Rev. Biol. Agrop. Tuxpan 9(2), 46-60. Doi: https://doi.org/10.47808/revistabioagro.v9i2.358
  • Santos, M.L.S., A.-A.F. Almeida, N.M. Silva, B.R.M. Oliveira, J.V.S. Silva, J.O. Souza Junior, D. Ahnert, and V.C. Baligar. 2020. Mitigation of cadmium toxicity by zinc in juvenile cacao: physiological, biochemical, molecular and micromorphological responses. Environ. Exp. Bot. 179, 104201. Doi: https://doi.org/10.1016/J.ENVEXPBOT.2020.104201
  • Suárez-Salazar, J.C., E.H. Duran-Bautista, J.A. Rojas-Castillo, and N. Ortiz-Cifuentes. 2017. Pigmentos fotosintéticos y conductancia estomática en ecotipos de copoazú (Theobroma grandiflorum Willd. Ex. Spreng K. Schum.). Agron. Mesoam. 28(1), 199-206. Doi: https://doi.org/10.15517/AM.V28I1.20814
  • Sun, Y., Y. Xu, Y. Xu, L. Wang, X. Liang, and Y. Li. 2016. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials. Environ. Pollut. 208 Part B, 739-746. Doi: https://doi.org/10.1016/j.envpol.2015.10.054
  • Tantalean Pedraza, E. and M.Á. Huauya Rojas. 2017. Distribución del contenido de cadmio en los diferentes órganos del cacao CCN-51 en suelo aluvial y residual en las localidades de Jacintillo y Ramal de Aspuzana. Rev. Investig. Agroprod. Sustent. 1(2), 69-78. Doi: https://doi.org/10.25127/aps.20172.365
  • Vanderschueren, R., D. Argüello, H. Blommaert, D. Montalvo, F. Barraza, L. Maurice, E. Schreck, R. Schulin, C. Lewis, J.L. Vazquez, P. Umaharan, E. Chavez, G. Sarret, and E. Smolders. 2021. Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Sci. Total Environ. 781, 146779. Doi: https://doi.org/10.1016/j.scitotenv.2021.146779
  • Wong Rivera, A.F. 2017. Determinación de cadmio (Cd) en suelo de cultivo para cacao CCN-51 mediante análisis de espectroscopía de absorción atómica. Undergraduate thesis. Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil.
  • Yao, A., Y. Liu, X. Luo, C. Liu, Y. Tang, S. Wang, X. Huang, and R. Qiu. 2021. Mediation effects of different sulfur forms on solubility, uptake and accumulation of Cd in soil-paddy rice system induced by organic carbon and liming. Environ. Pollut. 279, 116862. Doi: https://doi.org/10.1016/j.envpol.2021.116862
  • Zhang, H., Z. Xu, Y. Huo, K. Guo, Y. Wang, G. He, H. Sun, M. Li, X. Li, N. Xu, and G. Sun. 2020. Overexpression of Trx CDSP32 gene promotes chlorophyll synthesis and photosynthetic electron transfer and alleviates cadmium-induced photoinhibition of PSII and PSI in tobacco leaves. J. Hazard. Mater. 398, 122899. Doi: https://doi.org/10.1016/J.JHAZMAT.2020.122899

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >>