Skip to main navigation menu Skip to main content Skip to site footer

Effect of cyclodextrin on the quality of blueberry fruits (Vaccinium corymbosum L.) cv. Biloxi

Blueberry fruits for harvest. Photo: E. Gómez-Badillo

Abstract

Blueberries production has increased in Colombia due to the environmental conditions that facilitate their production, especially in areas of altitude greater than 2,000 m. Blueberry fruits are highly perishable and many producing companies do not have refrigeration systems, so the application of products to increase their conservation at room temperature is necessary. The postharvest behavior of blueberry fruits was evaluated with the application of different doses of cyclodextrin (CyDs) (0, 200, 400, 600, 800 or 1,000 µg L-1). The control fruits reached 13 days after harvest (dah), while the applications of 200, 400 and 600 µg L-1 maintained consumption quality for 15 days. The dose of 400 µg L-1 of CyDs showed the best performance in parameters such as mass loss (ML), firmness, total soluble solids (TSS), maturity ratio (RM) and respiratory intensity with respect to the control, while the application of 600 µg L-1 had the highest values of pH, total anthocyanins (AnT), luminosity (L*), chromaticity and hue. The AnT increased up to 13 dah in blueberry fruits, and thereafter, they decreased, indicating senescence and loss of nutritional value. During the storage of blueberry fruits, the values of L* decreased while chromaticity from green to red (a*) increased. The application of CyDs did not affect the organoleptic properties of the treated fruits in relation to the control, therefore, the CyDs do not affect the quality of consumption.

Keywords

Anthocyanins, Color, Edible coatings, Firmness, Maturation

PDF

References

  1. Abugoch, L., C. Tapia, D. Plasencia, A. Pastor, O. Castro-Mandujano, L. López, and V.H. Escalona. 2015. Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film. J. Sci. Food Agric. 96(2), 619-626. Doi: https://doi.org/10.1002/jsfa.7132
  2. Chen, H., S. Cao, X. Fang, H. Mu, H. Yang, X. Wang, Q. Xu, and H. Gao. 2015. Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Sci. Hortic. 188, 44-48. Doi: https://doi.org/10.1016/j.scienta.2015.03.018
  3. Chiabrando, V. and G. Giacalone. 2011. Shelf-life extension of highbush blueberry using 1-methylcyclopropene stored under air and controlled atmosphere. Food Chem. 126(4), 1812-1816. Doi: https://doi.org/10.1016/j.foodchem.2010.12.032
  4. Chiabrando, V. and G. Giacalone. 2017. Quality evaluation of blueberries coated with chitosan and sodium alginate during postharvest storage. Int. Food Res. J.24(4), 1553-1561.
  5. Concha-Meyer, A., J.D. Eifert, R.C. Williams, J.E. Marcy, and G. Welbaum. 2015. Shelf life determination of fresh blueberries (Vaccinium corymbosum) stored under controlled atmosphere and ozone. Int. J. Food Sci. 2015, 164143. Doi: https://doi.org/10.1155/2015/164143
  6. Eum, H.L., S.C. Hong, C. Chun, I.S. Shin, I.S., B.Y. Lee, H.K. Kim, and S.J. Hong. 2013. Influence of temperature during transport on shelf-life quality of highbush blueberries (Vaccinium corymbosum L. cvs. Bluetta, Duke). Hort. Environ. Biotechnol. 54, 128-133. Doi: https://doi.org/10.1007/s13580-013-0114-y
  7. Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi: https://doi.org/10.15446/agron.colomb.v40n2.101854
  8. Gibson, L., H.P. Vasantha-Rupasinghe, C.F. Forney, and L. Eaton. 2013. Characterization of changes in polyphenols, antioxidant capacity and physico-chemical parameters during lowbush blueberry fruit ripening. Antioxidants 2(4), 216-229. Doi: https://doi.org/doi:10.3390/antiox2040216
  9. Giongo, L., P. Poncetta, P. Loretti, and F. Costa. 2013. Texture profiling of blueberries (Vaccinium spp.) during fruit development, ripening and storage. Postharvest Biol. Technol. 76, 34-39. Doi: https://doi.org/10.1016/j.postharvbio.2012.09.004
  10. Granato, D., J.S. Santos, L.G. Maciel, and D.S. Nunes. 2016. Chemical perspective and criticism on selected analytical methods used to estimate the total content of phenolic compounds in food matrices. TrAC - Trends Anal. Chem. 80, 266-279. Doi. https://doi.org/10.1016/j.trac.2016.03.010
  11. Hedges, A. 2009. Cyclodextrins: properties and applications. pp. 833-851. In: BeMiller, J. and R. Whistler (eds.). Starch. 3rd ed. Academic Press, San Diego, CA. Doi: https://doi.org/10.1016/B978-0-12-746275-2.00022-7
  12. Herrera-Balandrano, D.D., Z. Chai, T. Beta, J. Feng, and W. Huang. 2021. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food Sci. Technol. 118, 808-821. Doi: https://doi.org/10.1016/j.tifs.2021.11.006
  13. INTAGRI, Instituto para la Innovación Tecnológica en la Agricultura. 2017. El cultivo de arándano o blueberry. In: https://www.intagri.com/articulos/frutillas/El-Cultivo-de-Ar%C3%A1ndano-o-Blueberry; consulted: January, 2023.
  14. Jaime-Guerrero, M., J.G. Álvarez-Herrera, and H.D. Ruiz-Berrío. 2022. Postharvest application of acibenzolar-S-methyl and plant extracts affect physicochemical properties of blueberry (Vaccinium corymbosum L.) fruits. Agron. Colomb. 40(1), 58-68. Doi: https://doi.org/10.15446/agron.colomb.v40n1.100044
  15. Jian, S. and M.H. Penner. 2019. The nature of β-cyclodextrin inhibition of potato polyphenol oxidase-catalyzed reactions. Food Chem. 298, 125004. Doi: https://doi.org/10.1016/j.foodchem.2019.125004
  16. Jinwei, Z., F. Jiangtao, and Y. Wei. 2019. Effects of inclusion compounds of 1-methylcyclopropene/α-cyclodextrin or 1-methyl-3-(2-methylcyclopropyl)-1-cyclopropene/Cu-β-cyclodextrin on the preservation of sweet cherry (Prunus avium L.). Curr. Sci. 117(10), 1716-1721. Doi: https://doi.org/10.18520/cs/v117/i10/1716-1721
  17. López-Nicolás, J.M., A.J. Pérez-López, A. Carbonell-Barrachina, and F. García-Carmona. 2007. Use of natural and modified cyclodextrins as inhibiting agents of peach juice enzymatic browning. J. Agric. Food Chem. 55(13), 5312-5319. Doi: https://doi.org/10.1021/jf070499h
  18. Lorduy, J. 2019. Cultivos de arándanos azules en Colombia se han triplicado en dos años. In: Agronegocios, https://www.agronegocios.co/agricultura/cultivos-de-arandanos-azules-en-colombia-se-han-triplicado-en-dos-anos-2905108; consulted: January, 2023.
  19. Paniagua, A.C., A.R. East, and J.A. Heyes. 2014. Interaction of temperature control deficiencies and atmosphere conditions during blueberry storage on quality outcomes. Postharvest Biol. Technol. 95, 50-59. Doi: https://doi.org/10.1016/j.postharvbio.2014.04.006
  20. Paniagua, A.C., A.R. East, J.P. Hindmarsh, and J.A. Heyes. 2013. Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biol. Technol. 79, 13-19. Doi: https://doi.org/10.1016/j.postharvbio.2012.12.016
  21. Pereira, A.G., M. Carpena, P.G. Oliveira, J.C. Mejuto, M.A. Prieto, and J.S. Gandara. 2021. Main applications of cyclodextrins in the food industry as the compounds of choice to form host–guest complexes. Int. J. Mol. Sci. 22(3), 1339. Doi: https://doi.org/10.3390/ijms22031339
  22. Saito, S., D. Obenland, and C.-L. Xiao. 2020. Influence of sulfur dioxide-emitting polyethylene packaging on blueberry decay and quality during extended storage. Postharvest Biol. Technol. 160, 111045. Doi: https://doi.org/10.1016/j.postharvbio.2019.111045
  23. Saltveit, M.E. 2019. Respiratory metabolism. pp. 73-91. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/b978-0-12-813278-4.00004-X
  24. Undurraga, P. and S. Vargas. 2013. Manual del arándano. Boletín INIA 263. Instituto de Investigaciones Agropecuarias, Chillán, Chile.
  25. Xu, F. and S. Liu. 2017. Control of postharvest quality in blueberry fruit by combined 1-methylcyclopropene (1-MCP) and UV-C irradiation. Food Bioprocess Technol. 10, 1695-1703. Doi: https://doi.org/10.1007/s11947-017-1935-y

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.