Effect of cyclodextrin on the quality of blueberry fruits (Vaccinium corymbosum L.) cv. Biloxi

Authors

  • Richard Alexander Roncancio-Chaparro Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ciencias Agropecuarias, Grupo de Investigaciones Agrícolas (GIA), Tunja https://orcid.org/0000-0002-5025-3669
  • Javier Giovanni Álvarez-Herrera Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ciencias Agropecuarias, Grupo de Investigaciones Agrícolas (GIA), Tunja https://orcid.org/0000-0002-1737-6325
  • Julián Mauricio Molano-Díaz Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ciencias Agropecuarias, Grupo de Investigaciones Agrícolas (GIA), Tunja https://orcid.org/0000-0003-4574-0873

DOI:

https://doi.org/10.17584/rcch.2022v16i3.15398

Keywords:

Anthocyanins, Color, Edible coatings, Firmness, Maturation

Abstract

Blueberries production has increased in Colombia due to the environmental conditions that facilitate their production, especially in areas of altitude greater than 2,000 m. Blueberry fruits are highly perishable and many producing companies do not have refrigeration systems, so the application of products to increase their conservation at room temperature is necessary. The postharvest behavior of blueberry fruits was evaluated with the application of different doses of cyclodextrin (CyDs) (0, 200, 400, 600, 800 or 1,000 µg L-1). The control fruits reached 13 days after harvest (dah), while the applications of 200, 400 and 600 µg L-1 maintained consumption quality for 15 days. The dose of 400 µg L-1 of CyDs showed the best performance in parameters such as mass loss (ML), firmness, total soluble solids (TSS), maturity ratio (RM) and respiratory intensity with respect to the control, while the application of 600 µg L-1 had the highest values of pH, total anthocyanins (AnT), luminosity (L*), chromaticity and hue. The AnT increased up to 13 dah in blueberry fruits, and thereafter, they decreased, indicating senescence and loss of nutritional value. During the storage of blueberry fruits, the values of L* decreased while chromaticity from green to red (a*) increased. The application of CyDs did not affect the organoleptic properties of the treated fruits in relation to the control, therefore, the CyDs do not affect the quality of consumption.

Downloads

Download data is not yet available.

References

Abugoch, L., C. Tapia, D. Plasencia, A. Pastor, O. Castro-Mandujano, L. López, and V.H. Escalona. 2015. Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film. J. Sci. Food Agric. 96(2), 619-626. Doi: https://doi.org/10.1002/jsfa.7132

Chen, H., S. Cao, X. Fang, H. Mu, H. Yang, X. Wang, Q. Xu, and H. Gao. 2015. Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Sci. Hortic. 188, 44-48. Doi: https://doi.org/10.1016/j.scienta.2015.03.018

Chiabrando, V. and G. Giacalone. 2011. Shelf-life extension of highbush blueberry using 1-methylcyclopropene stored under air and controlled atmosphere. Food Chem. 126(4), 1812-1816. Doi: https://doi.org/10.1016/j.foodchem.2010.12.032

Chiabrando, V. and G. Giacalone. 2017. Quality evaluation of blueberries coated with chitosan and sodium alginate during postharvest storage. Int. Food Res. J.24(4), 1553-1561.

Concha-Meyer, A., J.D. Eifert, R.C. Williams, J.E. Marcy, and G. Welbaum. 2015. Shelf life determination of fresh blueberries (Vaccinium corymbosum) stored under controlled atmosphere and ozone. Int. J. Food Sci. 2015, 164143. Doi: https://doi.org/10.1155/2015/164143

Eum, H.L., S.C. Hong, C. Chun, I.S. Shin, I.S., B.Y. Lee, H.K. Kim, and S.J. Hong. 2013. Influence of temperature during transport on shelf-life quality of highbush blueberries (Vaccinium corymbosum L. cvs. Bluetta, Duke). Hort. Environ. Biotechnol. 54, 128-133. Doi: https://doi.org/10.1007/s13580-013-0114-y

Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi: https://doi.org/10.15446/agron.colomb.v40n2.101854

Gibson, L., H.P. Vasantha-Rupasinghe, C.F. Forney, and L. Eaton. 2013. Characterization of changes in polyphenols, antioxidant capacity and physico-chemical parameters during lowbush blueberry fruit ripening. Antioxidants 2(4), 216-229. Doi: https://doi.org/doi:10.3390/antiox2040216

Giongo, L., P. Poncetta, P. Loretti, and F. Costa. 2013. Texture profiling of blueberries (Vaccinium spp.) during fruit development, ripening and storage. Postharvest Biol. Technol. 76, 34-39. Doi: https://doi.org/10.1016/j.postharvbio.2012.09.004

Granato, D., J.S. Santos, L.G. Maciel, and D.S. Nunes. 2016. Chemical perspective and criticism on selected analytical methods used to estimate the total content of phenolic compounds in food matrices. TrAC - Trends Anal. Chem. 80, 266-279. Doi. https://doi.org/10.1016/j.trac.2016.03.010

Hedges, A. 2009. Cyclodextrins: properties and applications. pp. 833-851. In: BeMiller, J. and R. Whistler (eds.). Starch. 3rd ed. Academic Press, San Diego, CA. Doi: https://doi.org/10.1016/B978-0-12-746275-2.00022-7

Herrera-Balandrano, D.D., Z. Chai, T. Beta, J. Feng, and W. Huang. 2021. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food Sci. Technol. 118, 808-821. Doi: https://doi.org/10.1016/j.tifs.2021.11.006

INTAGRI, Instituto para la Innovación Tecnológica en la Agricultura. 2017. El cultivo de arándano o blueberry. In: https://www.intagri.com/articulos/frutillas/El-Cultivo-de-Ar%C3%A1ndano-o-Blueberry; consulted: January, 2023.

Jaime-Guerrero, M., J.G. Álvarez-Herrera, and H.D. Ruiz-Berrío. 2022. Postharvest application of acibenzolar-S-methyl and plant extracts affect physicochemical properties of blueberry (Vaccinium corymbosum L.) fruits. Agron. Colomb. 40(1), 58-68. Doi: https://doi.org/10.15446/agron.colomb.v40n1.100044

Jian, S. and M.H. Penner. 2019. The nature of β-cyclodextrin inhibition of potato polyphenol oxidase-catalyzed reactions. Food Chem. 298, 125004. Doi: https://doi.org/10.1016/j.foodchem.2019.125004

Jinwei, Z., F. Jiangtao, and Y. Wei. 2019. Effects of inclusion compounds of 1-methylcyclopropene/α-cyclodextrin or 1-methyl-3-(2-methylcyclopropyl)-1-cyclopropene/Cu-β-cyclodextrin on the preservation of sweet cherry (Prunus avium L.). Curr. Sci. 117(10), 1716-1721. Doi: https://doi.org/10.18520/cs/v117/i10/1716-1721

López-Nicolás, J.M., A.J. Pérez-López, A. Carbonell-Barrachina, and F. García-Carmona. 2007. Use of natural and modified cyclodextrins as inhibiting agents of peach juice enzymatic browning. J. Agric. Food Chem. 55(13), 5312-5319. Doi: https://doi.org/10.1021/jf070499h

Lorduy, J. 2019. Cultivos de arándanos azules en Colombia se han triplicado en dos años. In: Agronegocios, https://www.agronegocios.co/agricultura/cultivos-de-arandanos-azules-en-colombia-se-han-triplicado-en-dos-anos-2905108; consulted: January, 2023.

Paniagua, A.C., A.R. East, and J.A. Heyes. 2014. Interaction of temperature control deficiencies and atmosphere conditions during blueberry storage on quality outcomes. Postharvest Biol. Technol. 95, 50-59. Doi: https://doi.org/10.1016/j.postharvbio.2014.04.006

Paniagua, A.C., A.R. East, J.P. Hindmarsh, and J.A. Heyes. 2013. Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biol. Technol. 79, 13-19. Doi: https://doi.org/10.1016/j.postharvbio.2012.12.016

Pereira, A.G., M. Carpena, P.G. Oliveira, J.C. Mejuto, M.A. Prieto, and J.S. Gandara. 2021. Main applications of cyclodextrins in the food industry as the compounds of choice to form host–guest complexes. Int. J. Mol. Sci. 22(3), 1339. Doi: https://doi.org/10.3390/ijms22031339

Saito, S., D. Obenland, and C.-L. Xiao. 2020. Influence of sulfur dioxide-emitting polyethylene packaging on blueberry decay and quality during extended storage. Postharvest Biol. Technol. 160, 111045. Doi: https://doi.org/10.1016/j.postharvbio.2019.111045

Saltveit, M.E. 2019. Respiratory metabolism. pp. 73-91. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/b978-0-12-813278-4.00004-X

Undurraga, P. and S. Vargas. 2013. Manual del arándano. Boletín INIA 263. Instituto de Investigaciones Agropecuarias, Chillán, Chile.

Xu, F. and S. Liu. 2017. Control of postharvest quality in blueberry fruit by combined 1-methylcyclopropene (1-MCP) and UV-C irradiation. Food Bioprocess Technol. 10, 1695-1703. Doi: https://doi.org/10.1007/s11947-017-1935-y

Blueberry fruits for harvest. Photo: E. Gómez-Badillo

Downloads

Published

2022-09-01
Metrics
Views/Downloads
  • Abstract
    89
  • PDF
    107

How to Cite

Roncancio-Chaparro, R A, Álvarez-Herrera, J G, & Molano-Díaz, J M. (2022). Effect of cyclodextrin on the quality of blueberry fruits (Vaccinium corymbosum L.) cv. Biloxi. Revista Colombiana de Ciencias Hortícolas, 16(3), e15398. https://doi.org/10.17584/rcch.2022v16i3.15398

Issue

Section

Fruits section