An approximation to the study of the relationship between starch concentration in the tree and its effect on fruit retention in avocado cv. Hass in the Andean tropics of Caldas, Colombia
Abstract
Low fruit set percentage, massive fruit drop, and low final retention continue to challenge researchers worldwide due to their direct impact on crop productivity. Among the factors influencing fruit retention, starch concentrations in the flowers have been noted to play a significant role; specifically, higher starch concentrations in the ovaries are associated with greater retention rates. The aim of this study was to determine the effect of starch concentrations in the trunk, roots, flower ovary and young shoots on both the initial and final retention of 'Hass' avocado fruit in two contrasting zones of the Andean tropics of Caldas, Colombia. The research was conducted in two commercial orchards situated at different altitudinal ranges in the Caldas department. Evaluations focused on 5-year-old 'Hass' avocado trees. Starch concentrations were measured in the roots, trunk, young shoots, and flower ovaries. Throughout the study, the number of flowers and fruit retention rates were monitored until harvest. Additionally, light and photosynthetically active radiation (PAR) levels were recorded and correlated with starch concentrations across different parts of the tree. A completely randomized experimental design was employed, and Tukey's comparison of means was utilized for data analysis. In conclusion, our findings confirm a direct relationship between starch levels and both initial and final fruit retention. Aranzazu, in particular, demonstrated higher proportions of flowers with medium and high levels of starch, and it was precisely in this zone where higher initial and harvest values of retained fruit were recorded.
Keywords
Flowering, Productivity, Carbohydrates, Altitude
References
- Abraha, M. and M. Savage. 2010. Validation of a three-dimensional solar radiation interception model for tree crops. Agric. Ecosyst. Environ. 139, 636-652. Doi: https://doi.org/10.1016/j.agee.2010.10.010
- Alcaraz, M., J. Hormaza, and J. Rodrigo. 2013. Pistil starch reserves at anthesis correlate with final flower fate in avocado (Persea americana). PLoS One 8(10), e78467. Doi: https://doi.org/10.1371/journal.pone.0078467
- Alcaraz, M. and J. Urroz. 2019. La polinización como factor limitante en la producción de aguacate. Rev. Frutic. (71), 40-45.
- Antione, P., R. Timarco, J. Crane, and W. Montas. 2013. Flowering dates and overlapping flowering periods of selected avocado (Persea americana) cultivars in homestead, Florida. Proc. Fla State Hort. Soc. 126, 14-16.
- Bastías, R. and L. Corelli-Grappadelli. 2012. Light quality management in fruit orchards: physiological and technological aspects. Chil. J. Agric. Res. 72(4), 574. Doi: https://doi.org/10.4067/S0718-58392012000400018
- Boldingh, H., M. Alcaraz, T. Thorp, P. Minchin, N. Gould, and J. Hormaza. 2016. Carbohydrate and boron content of styles of ‘Hass’ avocado (Persea americana Mill.) flowers at anthesis can affect final fruit set. Sci. Hort. 198, 125-131. Doi: https://doi.org/10.1016/j.scienta.2015.11.011
- Bonghi, C. P. Tonutti, and A. Ramina. 2000. Biochemical and molecular aspects of fruitlet abscission. Plant Grow. Reg. 31, 35-42. Doi: https://doi.org/10.1023/A:1006338210977
- Cherbiy-Hoffmann, S., A. Hall, and M. Rousseaux. 2013. Fruit, yield, and vegetative growth responses to photosynthetically active radiation during oil synthesis in olive trees. Sci. Hort. 150, 110-116. Doi: https://doi.org/10.1016/j.scienta.2012.10.027
- Chopy, M., M. Binaghi, G. Cannarozzi, R. Halitschke, B. Boachon, R. Heutink, D. Pedenla, L. Jaggi, G. Van Geest, J. Verdonk, and C. Kuhlemeier. 2023. A single MYB transcription factor with multiple functions during flower development. New Phytol. 239(5), 2007-2025. Doi: https://doi.org/10.1111/nph.19096
- Costa, G. V. Dal Cin, and A. Ramina. 2005. Physiological, molecular and practical aspects of fruit abscission. Acta Hortic. 727, 301-310. Doi: https://doi.org/10.17660/ActaHortic.2006.727.36
- D'asaro, A. 2017. Nutritional and hormonal factors affecting fruit set in avocado (Persea americana Mill.). PhD thesis. Universitat Politècnica de València, Valencia, Spain.
- Davenport, T. 2011. Avocado flowering. Hortic. Rev. 8, 257-289. Doi: https://doi.org/10.1002/9781118060810.ch7
- Farhat, N. A. Elkhouni, W. Zorrig, A. Smaoui, C. Abdelly, and M. Rabhi. 2016. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol. Plant. 38(6), 145. Doi: https://doi.org/10.1007/s11738-016-2165-z
- Finazzo, S., T. Davenport, and B. Schaffer. 1994. Partitioning of photoassimilates in avocado (Persea americana Mill.) during flowering and fruit set. Tree Physiol. 14(2), 153-164. Doi: https://doi.org/10.1093/treephys/14.2.153
- Garner, L. and C. Lovatt. 2016. Physiological factors affecting flower and fruit abscission of ‘Hass’ avocado. Sci. Hortic. 199, 32-40. Doi: https://doi.org/10.1016/j.scienta.2015.12.009
- Gott, B. H. Barton, D. Samuel, and R. Torrence. 2016. Biology of starch. pp. 35-45. In: R. Torrence and H. Barton (eds.). Ancient starch research. Routledge, New York, NY.
- Graf, A. A. Schlereth, M. Stitt, and A. Smith. 2010. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc. Nal. Acad. Sci. USA 107(20), 9458-9463. Doi: https://doi.org/10.1073/pnas.0914299107
- Hilliard, J. and S. West. 1970. Starch accumulation associated with growth reduction at low temperatures in a tropical plant. Science 168(3930), 494-496. Doi: https://doi.org/10.1126/science.168.3930.494
- Ish-Am, G. 2005. Avocado pollination: a review. In: New Zealand and Australia Avocado Grower’s Conference. Tauranga, New Zealand.
- Lahav, E. and D. Zamet. 1999. Flowers, fruitlets and fruit drop in avocado tree. Rev. Chapingo Ser. Hortic. 5, 95-100.
- Liu, X. Robinson, P. Madore, M. Witney, G. and M. Arpaia. 1999. Hass' avocado carbohydrate fluctuations. II. Fruit growth and ripening. J. Am. Soc. Hort. Sci. 124(6),676-681. Doi: https://doi.org/10.21273/JASHS.124.6.676
- Martínez, R., D. Ruiz, M. Andrade, L. Blacutt, D. Pabón, E. Jaimes, G. León, M. Villacís, J. Quintana, E. Montealegre, and C. Euscátegui. 2011. Synthesis of the climate of the tropical Andes. pp. 97-109. In: Herzog, S.K., R. Martínez, P.M. Jørgensen, and H. Tiessen (eds.). Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI); Scientific Committee on Problems of the Environment (SCOPE), Sao Paulo, Brazil.
- Menzel, C. and M. Le Lagadec. 2014. Increasing the productivity of avocado orchards using high-density plantings: a review. Sci. Hort. 177, 21-36. Doi: https://doi.org/10.1016/j.scienta.2014.07.013
- Mesejo, C. A. Martínez-Fuentes, C. Reig, and M. Agustí. 2019. The flower to fruit transition in Citrus is partially sustained by autonomous carbohydrate synthesis in the ovary. Plant Sci. 285, 224-229. Doi: https://doi.org/10.1016/j.plantsci.2019.05.014
- Miernik, A. and T. Jakubowski. 2021. Selected methods for starch content determination in plant materials. J. Phys.: Conf. Ser. 1782(1), 012019. Doi: https://doi.org/10.1088/1742-6596/1782/1/012019
- Newell, E., S. Mulkey, and J. Wright. 2002. Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia 131, 333-342. Doi: https://doi.org/10.1007/s00442-002-0888-6
- Palacio, S. J. Camarero, M. Maestro, A. Alla, E. Lahoz, and G. Montserrat-Martí. 2018. Are storage and tree growth related? Seasonal nutrient and carbohydrate dynamics in evergreen and deciduous Mediterranean oaks. Trees 32, 777-790. Doi: https://doi.org/10.1007/s00468-018-1671-6
- Plavcová, L., G. Hoch, H. Morris, S. Ghiasi, and S. Jansen. 2016. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. Am. J. Bot. 103(4), 603-612. Doi: https://doi.org/10.3732/ajb.1500489
- Pokhilko, A., A. Flis, R. Sulpice, M. Stitt, and O. Ebenhöh. 2014. Adjustment of carbon fluxes to light conditions regulates the daily turnover of starch in plants: a computational model. Mol. BioSyst. 10(3), 613-627. Doi: https://doi.org/10.1039/C3MB70459A
- Renner, S. 2007. Synchronous flowering linked to changes in solar radiation intensity. New Phytol. 175, 195-197. Doi: https://doi.org/10.1111/j.1469-8137.2007.02132.x
- Schaffer, B., P. Gil, M. Mickelbart, and A. Whiley. 2013. Ecophysiology. pp. 168-199. In: The avocado: botany, production and uses. CABI, Wallingford, UK. Doi: https://doi.org/10.1079/9781845937010.0168
- Scholefield, P., M. Sedgley, and D. Alexander. 1985. Carbohydrate cycling in relation to shoot growth, floral initiation and development and yield in the avocado. Sci. Hort. 25(2), 99-110. Doi: https://doi.org/10.1016/0304-4238(85)90081-0
- Silva, S., T. Cantuarias-Avilés, B. Chiavelli, M. Martins, and M. Oliveira. 2017. Phenological models for implementing management practices in rain-fed avocado orchards. Pesq. Agropec. Trop. 47, 321-327. Doi: https://doi.org/10.1590/1983-40632016v4747140
- Soil Survey Staff. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd ed. NRCS-USDA, Washington, DC.
- Thorp, T. A. Barnett, H. Boldingh, T. Elmsly, and P. Minchin. 2011. Is boron transport to avocado flowers regulated by carbohydrate supply. In: Proc. 7th World Avocado Congress. Cairns, Australia.
- Van Vuuren, B. Stassen, P. and S. Davie. 1997. Sink demand for starch reserves in avocado trees. S. Afr. Avocado Grow. Assoc. Yearb. 20, 59-62. http://avocadosource.com/Journals/SAAGA/SAAGA_1997/SAAGA_1997_PG_059-062.pdf; consulted: February, 2023.
- Wilkie, J. Conway, J. Griffin, J. and H. Toegel. 2019. Relationships between canopy size, light interception and productivity in conventional avocado planting systems. J. Hort. Sci. Biotechnol. 94, 481-487. Doi: https://doi.org/10.1080/14620316.2018.1544469
- Wolstenholme, B. 2010. Alternate bearing in avocado: an overview. In: http://209.143.153.251/papers/SouthAfrica_Papers/WolstenholmeNigel2010.pdf; consulted: February, 2023.
- Yeang, H. 2007. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity. New Phytol. 175, 283-289. Doi: https://doi.org/10.1111/j.1469-8137.2007.02089.x