Biomass and root development response of lulo (Solanum quitoensevar. septentrionale) plants to shading and waterlogging
DOI:
https://doi.org/10.17584/rcch.2016v10i1.5124Keywords:
Dry weight, Root collar, Root length, Shoot/root ratioAbstract
Climate change and its variability increase rainy periods, generating flooding and waterlogging, which affect the physiological development of cultivated species. In lulo, although growth under shade is recommended, the effect of stress due to waterlogging was studied under conditions of partial shading in greenhouse. Young lulo plants were planted in 5 L plastic pots with soil and sand quartzite at a ratio of 1: 1 v/v as substrate. The effect of 65% shading and no shading during four periods of waterlogging, 0, 3, 6 and 9 days, and a recovery period of 9 days each on the development of plant biomass and roots was determined. The shading decreased biomass accumulation in all of the vegetative organs, especially the leaves (-22.7%). No interactions between the shading and waterlogging were measured. The root system proved to be the organ most affected by the periods of increased waterlogging (over 6 and 9 days), with reductions in the diameter of the root collar, length of taproot, volume and dry weight of roots, while; as a consequence, the shoot/root ratio of the biomass increased due to rhizosphere oxygen deprivation. During the recovery period of 9 days, the negative effect of the waterlogging persisted and was further aggravated for the volume and root length variables.
Downloads
References
Aldana, F., P. García y G. Fischer. 2014. Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants. Rev. Acad. Colomb. Cienc. 38(149), 393-400. Doi: 10.18257/raccefyn.114.
Bailey-Serres, J., S.C. Lee y E. Brinton. 2012. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 160, 1698-1709. Doi: 10.1104/pp.112.208173
Bailey-Serres, J. y L. Voesenek. 2008. Flooding stress: Aclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313-39. Doi: 10.1146/annurev.arplant.59.032607.092752
Baracaldo. A., R. Carvajal, A. Romero, A. Prieto, F. Garcia, G. Fischer y D. Miranda. 2014. El anegamiento afecta el crecimiento y producción de biomasa en tomate chonto (Solanum lycopersicum L.), cultivado bajo sombrío. Rev. Colomb. Cienc. Hortic. 8(1), 92-102. Doi: 10.17584/rcch.2014v8i1.2803
Bonet, J. G. y J. F. Cárdenas. 2012. Lulo (Solanum quitoense Lam.). pp. 604-621. En: Fischer, G. (ed.) Manual para el cultivo de frutales en el trópico. Produmedios, Bogotá.
Casierra-Posada, F., K. Pe-a-Olmos, J. Pe-aloza y G. Roveda. 2013. Influencia de la sombra y de micorrizas sobre el crecimiento de plantas de lulo (Solanum quitoense Lam.). Rev. UDCA Act. &Div. Cient. 16(1), 61-70.
DANE. 2011. Reporte final de áreas afectadas por inundaciones 2010-2011. Departamento Administrativo Nacional de Estadísticas. Bogotá.
Dwivedi, P. y R.S. Dwivedi. 2012. Physiology of abiotic stress in plants. Agrobios, Jodhpur, India.
Fernández, R., R. Perry, J. Flore y R. McLean. 1997. Photosintesis, C-photosynthate distribution and shoot and root growth of young apple trees on 3 rootstocks exposed to flooding. Acta Hortic. 451, 351-359. Doi: 10.17660/ActaHortic.1997.451.41
Fischer, G., P.J. Almanza-Merchán y F. Ramírez. 2012. Source-sink relationships in fruit species. A review. Rev. Colomb. Cienc. Hortic. 6(2), 238-253. Doi: 10.17584/rcch.2012v6i2.1980
Fischer, G. y J. Orduz-Rodríguez. 2012. Ecofisiología en frutales. pp. 54-72. En: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogotá.
Flórez-Velasco, N., H.E. Balaguera-López y H. Restrepo-Díaz. 2015. Effects of foliar urea application on lulo (Solanum quitoense cv. septentrionale) plants grown under different waterlogging and nitrogen conditions. Sci. Hortic. 186, 154-162. Doi: 10.1016/j.scienta.2015.02.021
González, D., L. Ordóñez, P. Vanegas y H. Vásquez. 2014. Cambios en las propiedades fisicoquímicas de frutos de lulo (Solanum quitoense Lam.) cosechados en tres grados de madurez. Acta Agron. 63(1), 11-17. Doi: 10.15446/acag.v63n1.31717
Hansen, P. 1978. Blatt/Frucht-Verhältnisse, Assimilatverteilung und Fruchtentwicklung. Erwerbsobstbau 20, 228-231.
Khondaker, N.A. y K. Ozawa. 2007. Papaya plant growth as affected by soil air oxygen deficiency. Acta Hortic. 740, 225-232. Doi: 10.17660/ActaHortic.2007.740.27
Kozlowski, T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. Monogr. 1, 1-29. Doi: 10.1093/treephys/17.7.490
Laan, P., M. Tosserams, C.W.P.M. Blom y B.W. Veen. 1990. Internal oxygen transport in Rumex species and its significance for respiration under hypoxic conditions. Plant Soil 122, 39-46. Doi: 10.1007/BF02851908
Lambers, H., F.S. Chapin III y T.L. Pons. 2008. Plant physiological ecology. 2nd ed. Springer, New York, NY. Doi: 10.1007/978-0-387-78341-3
Larcher, W. 2003. Physiological plant ecology. Springer-Verlag, Berlin. Doi: 10.1007/978-3-662-05214-3
Lavinsky. A.O., C.d.S. Sant'Ana, M.S. Mielke, A.A.F. de Almeida, F.P. Gomes, S. Franca y D.d.C. Silva. 2007. Effects of light avaibility and soil flooding on growth and photosynthetic characteristics of Genipa americana L. seedlings. New Forests 34, 41-50.
Lobo, M. 2000. Papel de la variabilidad genética en el desarrollo de los frutales andinos como alternativa productiva. pp. 27-36. En: Memorias 3er Seminario de Frutales de Clima Frío Moderado. Corpoica, Manizales, Colombia.
López, M.V. y D.A. del Rosario. 1983. Performance of tomatoes (Lycopersicon lycopersicum (L.) Karsten) under waterlogged conditions. Philippine J. Crop Sci. 8(2), 75-80.
MADR. 2014. Estadística agropecuaria 2007-2014. Grupo de Estadísticas e Información Sectorial. Ministerio de Agricultura y Desarrollo Rural, Bogotá.
Medina, C.I., E. Martínez, M. Lobo, J.C. López y N. Ria-o. 2006. Comportamiento bioquímico y del intercambio gaseoso del lulo (Solanum quitoense Lam.) a plena exposición solar en el bosque húmedo montano bajo del oriente antioqueño colombiano. Rev. Fac. Nac. Agron. Medellín 59(1), 3123-3146.
Messinger, J. y M. Lauerer. 2015. Solanum quitoense, a new greenhouse crop for Central Europe: Flowering and fruiting respond to photoperiod. Sci. Hortic. 183, 23-30. Doi: 10.1016/j.scienta.2014.11.015
Mielke, M.S., E.M. Matos, V.B. Couto, A.-A.F. de Almeida, F.P. Gomes y P.A.O. Mangabeira. 2005. Some photosynthetic and growth responses of Annona glabra L. seedlings to soil flooding. Acta Bot. Bras. 19, 905-911. Doi: 10.1590/S0102-33062005000400025
Mielke, M.S. y B. Schaffer. 2010. Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environ. Exp. Bot. 68,113-121. Doi: 10.1016/j.envexpbot.2009.11.007
Mommer, L., H. de Kroon, R. Pierik, G.M. Bögemann y E.J.W. Visser. 2005. A functional comparison of acclimation to shade and submergence in two terrestrial plant species. New Phytologist 167, 197-206. Doi: 10.1111/j.1469-8137.2005.01404.x
Moreno, A. y G. Fischer. 2014. Efectos del anegamiento en los frutales. Una revisión. Temas Agrarios 19(1), 108-125.
Morton, J. 1987. Naranjilla (Solanum quitoense Lam., Solanum angulatum Lam.). pp. 425-428. En: Dowling, C.F. (ed.). Fruits of warm climates. Creative Resources Systems, Inc., Miama, FL.
Najeeb, U., M.B. Bange, D.K.Y. Tan y B.J. Atwell. 2015. Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AoB Plants 7. Doi: 10.1093/aobpla/plv080
Núñez-Elisea, R., B. Schaffer, J.B. Fisher, A.M. Colls y J.H. Crane. 1999. Influence of flooding on net CO2 assimilation, growth and stem anatomy of Annona species. Ann. Bot. 84, 771-780. Doi: 10.1006/anbo.1999.0977
Pallardy, S.G. 2007. Physiology of woody plants. 3a ed. Academic Press, San Diego, CA.
Pardos. J. 2004. Respuestas de las plantas al anegamiento del suelo. Invest. Agrar: Sist. Recur. For. (Fuera de serie), 101-107.
Sairam, R.K., D. Kumutha, K. Ezhilmathi, P.S. Deshmukh y G.C. Srivastava. 2008. Physiology and biochemistry of waterlogging tolerance in plants. Biol. Plant. 52(3), 401-412. Doi: 10.1007/s10535-008-0084-6
Sauter, M. 2013. Root response to flooding. Curr. Opinion Plant Biol. 16, 282-286. Doi: 10.1016/j.pbi.2013.03.013
Steffens, D., B.W. Hütsch, T. Eschholz, T. Lošák y S. Schubert. 2005. Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity. Plant Soil Environ. 51(12), 545-552.
Striker, G.G. 2012. Flooding stress on plants: anatomical, morphological and phys-iological responses. pp. 3-28. In: Botany. InTech, Rijeka, Croacia.
Taiz, L. y E. Zeiger. 2010. Plant physiology. 3a ed. Sinauer Associates, Sunderland, MA.
Valladares, F. y U. Niinemets. 2008. Partial sunlight tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237-257. Doi: 10.1146/annurev.ecolsys.39.110707.173506
Vartapetian, B.B. y M.B. Jackson. 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79, 3-20. Doi: 10.1093/oxfordjournals.aob.a010303
Vidoz, M.L., F. Mignolli, H.T. Aispuru, L.A. Mroginski. 2016. Rapid formation of adventitious roots and partial ethylene sensitivity result in faster adaptation to flooding in the aerial roots (aer) mutant of tomato. Sci. Hortic. 201, 130-139. Doi: 10.1016/j.scienta.2016.01.032
Zeng, F., L. Shabala, M. Zhou, G. Zhang y S. Shabala. 2013. Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. Frontiers Plant Sci. 4(313). Doi: 10.1093/treephys/tpv089
Yamauchi, T., S. Shimamurab, M. Nakazonoa y T. Mochizukic. 2013. Aerenchyma formation in crop species: A review. Field Crops Res. 152, 8-16. Doi: 10.1016/j.fcr.2012.12.008
Yetisir, H., M.E. Caliskan, S. Soylu y M. Saka. 2006. Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria siceraria to flooding. Environ. Exp. Bot. 58, 1-8. Doi: 10.1016/j.envexpbot.2005.06.010
Downloads
Published
-
Abstract950
-
PDF (Español)1130
How to Cite
Issue
Section
License
The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.