Abiotic stress caused by foliar applications of boron to the yellow diploid potato (Solanum tuberosum, Group Phureja) cultivar Criolla Galeras

Main Article Content

Autores

Manuel Iván Gómez https://orcid.org/0000-0002-1469-7676
Hermann Restrepo https://orcid.org/0000-0002-1838-5872
Luis Ernesto Rodríguez https://orcid.org/0000-0002-9058-8404
Stanislav Magnitskiy https://orcid.org/0000-0002-3715-1932
Lady Manrique https://orcid.org/0000-0001-5232-7521
Alfonso Garzón https://orcid.org/0000-0001-7602-0620

Abstract

Foliar applications of boron (B) constitute a frequent practice in the fertilization of the yellow diploid potato and are generally done with excessive and empirical doses generating toxicities in crops. The effect of foliar applications of B at doses of 0, 0.5, 1.2, or 4 kg ha-1 was determined for physiological and metabolic variables and toxicity symptoms in the yellow diploid potato cultivar Criolla Galeras under greenhouse conditions using Na octaborate (20.5% B, 11% Na) or boric acid (17.5% B) as sources of B. Significant differences (P<0.05) were found between the sources and doses for dry matter (DW), leaf area (LA), proline content, and electrolyte leakage (ECh). The highest toxicity was observed for B applied as sodium octaborate at concentrations of 2 and 4 kg ha-1 B with a reduction of DM up to 40%, a decrease of LA up to 90%, a loss of 60% in ECh, and a significant increase in the concentration of proline (65 μmol/g fresh weight). The lower toxicity of boric acid at doses higher than 2 kg ha-1 B indicated that the octaborate Na presented synergism with B, which can result in a greater oxidative stress, causing instability of the membranes, necrosis and premature tissue death, as evidenced in the description of the visual symptoms. The doses of 0.5 and 1.0 kg ha-1 B for both sources resulted in positive responses in the DW and non-significant (P<0.05) differences with the control, associated with the levels of proline and ECh, which indicated a narrow range between the deficiency and toxicity of B for cv. Criolla Galeras, where the effect of the accompanying ion must be considered in the selection of the boron source.

Keywords:

Article Details

Licence

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.

References

Agronet. 2016. Área, producción y rendimiento por cultivo: papa criolla. In: http://www.agronet.gov.co/estadistica/Paginas/default.aspx; consulted: April, 2018.

Archana, P.N. and P. Verma. 2017. Boron deficiency and toxicity and their tolerance in plants: a review. J. Global Biosci. 6, 4958-4965.

Asad, A., F.P. Blamey, and D. Edwards. 2002. Dry matter production and boron concentrations of vegetative and reproductive tissues of canola and sunflower plants grown in nutrient solution. Plant Soil 243(1), 243-252. Doi: 10.1023/A:1019909130031

Ayvaz, M., M.K. Avci, C. Yamaner, M. Koyuncu, A. Guven, and K. Fagerstedt. 2013. Does excess boron affect the malondialdehyde levels of potato cultivars? Eur. Asian J. BioSci. 7, 47-53. Doi: 10.5053/ejobios.2013.7.0.6

Barrett, W. and J. Douglass. 2004. Electrolyte leakage from stem tissue as an indicator of hardwood seedling physiological status and hardiness. USDA Forest Service, In: http://www.fs.fed.us; consulted June 15, 2018.

Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205-207. Doi: 10.1007/BF00018060

Bonilla, G. and A. González. 2011. Salt stress in vascular plants and its interaction with boron toxicity. pp. 2227-240. In: Vasanthaiah, H. (ed). Plants and environment. In Tech, Rijeka, Croatia. Doi: 10.5772/24892

Brown, P.H. and H. Hu. 1998. Phloem boron mobility in diverse plant species. Bot. Acta 111, 331-335. Doi: 10.1111/j.1438-8677.1998.tb00717.x

Castro, H. and M.I. Gómez. 2010. Fertilidad de suelos y fertilizantes aplicados al trópico colombiano. Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.

Cervilla, L. 2009. Respuesta fisiológica y metabólica a la toxicidad por boro en plantas de tomate. Estrategias de tolerancia. PhD thesis. Universidad de Granada, Granada, Spain.

Cervilla, L., B. Blasco, J. Ríos, M. Rosales, E. Sánchez, M. Rubio, L. Romero, and J. Ruiz. 2012. Parameters symptomatic for boron toxicity in leaves of tomato plants. J. Bot. 2012, 726206. Doi: 10.1155/2012/726206

Cha-Um, S., T. Takabe, and C. Kirdmaneei. 2010. Ion contents, relative electrolyte leakage, proline accumulation, photosynthetic abilities and growth characters of oil palm seedlings in response to salt stress. Pak. J. Bot. 42(3), 2191-2020.

Di Gioia, F., A. Aprile, E. Sabella, P. Santamaria, A. Pardossi, A. Miceli, L. De Bellis, and E. Nutricati. 2017. Grafting response to excess boron and expression analysis of genes coding boron transporters in tomato. Plant Biol. 19, 728-735. Doi: 10.1111/plb.12589

Dominic, V. and T. Jithin. 2012. Effect of NaCl and boron toxicity on proline biosynthesis of Oryza sativa Int. J. Life Sci. Pharm. 1(3), 74-83.

Eichert, T. and H.E. Goldbach. 2010. Transpiration rate affects the mobility of foliar-applied boron in Ricinus communis L. cv. Impala. Plant Soil 328, 165-174. Doi: 10.1007/s11104-009-0094-y

Fernández, V., T. Sotiropoulos, and P. Brown. 2013. Foliar fertilization: scientific principles and field practices. IFA, Paris.

García, G. and G. Poveda. 2014. Efecto de la aplicación foliar de K, B y Zn sobre el rendimiento y calidad del tubérculo en papa criolla (Solanum tuberosum, Grupo Phureja) cultivar Criolla Colombia. Undergraduate thesis. Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá.

Gardner, F.P., R.B. Pearce, and R. Mitchell. 2003. Physiology of crop plants. Blackwell Publishing Company, Ames, IA.

Herrera, M., A. González, J. Rexach, J. Camacho, J. Maldonado, and M. Navarro. 2010. Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress 4(1), 115-122.

Herrera, A. and L.E. Rodríguez. 2011. Tecnologías de producción y transformación de papa criolla. Universidad Nacional de Colombia, Bogota.

Karabal, E., M. Yücel, and A. Öktem. 2003. Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci. 164(1), 925-933. Doi: 10.1016/S0168-9452(03)00067-0

Keles, Y., I. Öncel, and N. Yenice. 2004. Relationship between boron content and antioxidant compounds in Citrus leaves taken from fields with different water source. Plant Soil 265, 345-353. Doi: 10.1007/s11104-005-0646-8

Levy, D. and R. Veilleux. 2007. Adaptation of potato to high temperatures and salinity a review. Am. J. Potato Res. 84, 487-506. Doi: 10.1007/BF02987885

Macho, M.Á., J.J. Camacho, M.B. Herrera, M. Müller, S. Munné, and A. González. 2017. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants. Physiol. Plant. 160(1), 21-32. Doi: 10.1111/ppl.12534

Metwally, A., R. El-Shazoly, and M. Hamada. 2012. Effect of boron on growth criteria of some wheat cultivars. J. Biol. Earth Sci. 2(1), 1-9.

Mohammed, B., K. Jean, and L. Stanley. 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36(1), 61-70. Doi: 10.1023/A:1014732714549

Pérez, L., L. Rodríguez, and M. Gómez. 2008. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la apllicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum Phureja) variedad Criolla Colombia. Agron. Colomb. 26(3), 477-486.

Reid, R., J. Hayes, A. Post, J. Stangoulis, and R. Graham. 2004. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 27(11), 1405-1414. Doi: 10.1111/j.1365-3040.2004.01243.x

Reid, R. 2010. Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Sci. 178(1), 9-11. Doi: 10.1016/j.plantsci.2009.10.006

Rodríguez, L., C. Ñustez, and N. Estrada. 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agron. Colomb. 27(3), 289-303.

Ruiz, J., M. Rivero, and L. Romero. 2003. Preliminary studies on the involvement of biosynthesis of cysteine and glutathione concentration in the resistance to B toxicity in sunflower plants. Plant Sci. 165, 811-817. Doi: 10.1016/S0168-9452(03)00276-0

Savic, J., I. Dragicevic, and D. Pantelic. 2012. Expression of small heat shock proteins and heat tolerance in potato (Solanum tuberosum L.). Arch. Biol. Sci. 64(1), 135-144. Doi: 10.2298/ABS1201135S

Seth, K. and N.C. Aery. 2017. Boron induced changes in biochemical constituents, enzymatic activities, and growth performance of wheat. Acta Physiol. Plant. 39(11), 244. Doi: 10.1007/s11738-017-2541-3

Shah, A., X. Wu, A. Ullah, S. Fahad, R. Muhammad, L. Yan, and C. Jiang. 2017. Deficiency and toxicity of boron: Alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxic. Environm. Safety 145, 575-582. Doi: 10.1016/j.ecoenv.2017.08.003

Siddiqui, M., M. Sakran, M. Hayssam, O. Mohammed, M. Faisal, and A. Alatar. 2013. Calcium-induced amelioration of boron toxicity in radish. J. Plant Growth Regul. 32, 61-71. Doi: 10.1007/s00344-012-9276-6

Downloads

Download data is not yet available.