Seed-fruit relationships in fleshy fruits: Role of hormones. A review

Main Article Content


Helber Enrique Balaguera-López
Gerhard Fischer
Stanislav Magnitskiy


Seeds are known to have significant biological importance in nature, and they have high economic value in agriculture. This review discusses the physiological, biochemical, and hormonal aspects involved in the seed-fruit relationship, highlighting the main implications that seeds have on fruit set and growth, development, and abscission of some fleshy fruits. Fleshy fruits, with the exception of some parthenocarpic species, require pollination and double fertilization for seed formation. This contributes to the stimulation of hormone synthesis for auxins, gibberellins, cytokinins, and brassinosteroids. These hormones are required for seed formation and, in turn, for fruit development; and they determine fruit set, final fruit size, fruit shape and quality characteristics in some fruits. This knowledge is necessary for successful management of the cultivation of species producing fleshy fruits.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.


Acciarri, N., F. Restaino, G. Vitelli, D. Perrone, M. Zottini, T. Pandolfini, A. Spena, and G.L. Rotino. 2002. Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation. BMC Biotechnol. 2, 1-7. Doi: 10.1186/1472-6750-2-4

Agrawal, G.K. and R. Rakwal. 2012. Seed development: OMICS technologies toward improvement of seed quality and crop yield. Springer, New York. Doi: 10.1007/978-94-007-4749-4

Agustí, M. 2004. Fruticultura. Ediciones Mundi-Prensa, Madrid.

Agustí, M. 2013. Crecimiento y maduración del fruto. pp. 519-535. In: Azcón-Bieto, J. and M. Talón. (eds.). Fundamentos de fisiología vegetal. 2nd ed. Interamericana McGraw-Hill, Madrid.

Agustí, M., A. Martínez-Fuentes, C. Mesejo, M. Juan, and V. Almela. 2003. Cuajado y desarrollo de los frutos cítricos. Generalitat Valenciana, Valencia, Spain.

Alabadí, D., M.A. Blázquez, J. Carbonell, C. Ferrándiz, and M.A. Pérez-Amador. 2009. Instructive roles for hormones in plant development. Int. J. Dev. Biol. 53, 1597-1608. Doi: 10.1387/ijdb.072423da

Almanza, P.J., P.A. Serrano, and G. Fischer. 2012. Manual de viticultura tropical. Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.

Almanza-Merchán, P., G. Fischer, A. Herrera-Arévalo, A. Jarma-Orozco, and H. Balaguera-López. 2012. Physicochemical behavior of Riesling × Silvaner grapevine fruit under the high altitude conditions of Colombia (South America). J. Appl. Bot. Food Qual. 85, 49-54

Almanza-Merchán, P., J. Velandia D., and Y. Tovar. 2016. Propiedades fisicoquímicas durante el crecimiento y desarrollo de frutos de lulo (Solanum quitoense Lam.). Rev. Colomb. Cienc. Hortic. 10(2), 222-231. Doi: 10.17584/rcch.2016v10i2.5065

An, J., R.A. Almasaud, M. Bouzayen, M. Zouine, and C. Chervin. 2020. Auxin and ethylene regulation of fruit set. Plant Sci. 292, 110381. Doi: 10.1016/j.plantsci.2019.110381

Atwell, B.J., P.E. Kriedemann, and C.G.N. Turnbull. 2003. Plants in action: Adaptation in nature, performance in cultivation. Macmillan Education, Melbourne, Australia.

Azcón-Bieto, J. and M. Talón (eds.). 2013. Fundamentos de fisiología vegetal. 2nd ed. Interamericana McGraw-Hill, Madrid.

Balaguera-López, H.E., A. Herrera, and D. Cortés-Moreno. 2012. Growth of champa fruit under agroecological conditions of Miraflores, Boyacá, Colombia. Pesq. Agropec. Bras. 47(12), 1722-1730. Doi: 10.1590/S0100-204X2012001200007

Bangerth, F. 1976. A role for auxin and auxin transport inhibitors on the calcium content of artificially induced parthenocarpic fruits. Physiol. Plant. 37, 191- 194. Doi: 10.1111/j.1399-3054.1976.tb03956.x

Bashir, M.A., A.M. Alvi, K.A. Khan, M.I.A. Rehmani, M.J. Ansari, S. Atta, and M. Tariq. 2018. Role of pollination in yield and physicochemical properties of tomatoes (Lycopersicon esculentum). Saudi J. Biol. Sci. 25(7), 1291-1297. Doi: 10.1016/j.sjbs.2017.10.006

Ben-Cheikh, W., J. Pérez-Botella, F.R. Tadeo, M. Talón, and E. Primo-Millo. 1997. Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol. 114, 557-564. Doi: 10.1104/pp.114.2.557

Bewley, J.D., K.J. Bradfort, H.W.M. Hilhorst, and H. Nonogaki. 2013. Seeds physiology of development, germination and dormancy. 3rd ed. Springer, New York.

Blažek, J. and I. Hlušičková. 2006. Seed count, fruit quality and storage properties in four apple cultivars. J. Fruit Ornam. Plant Res. 14 (Suppl. 2), 151-160.

Boselli, M., B. Volpe, and C. Di Vaio. 1995. Effect of seed number per berry on mineral composition of grapevine (Vitis vinifera L.) berries. J. Hortic. Sci. 70(3) 509-515. Doi: 10.1080/14620316.1995.11515322

Bramlage, W.J., S.A. Weis, and D.W. Greene. 1990. Observations on the relationships among seeds number, fruit calcium and senescent breakdown in apples. HortScience 25, 351-353. Doi: 10.21273/HORTSCI.25.3.351

Brault, A. and D. de Oliveira. 1995. Seed number and an asymmetry index of ‘McIntosh’ apples. HortScience 30, 44-46. Doi: 10.21273/HORTSCI.30.1.44

Buccheri, M. and C. Di Vaio. 2004. Relationship among seed number, quality, and calcium content in apple fruits. J. Plant Nutr. 27(10), 1735-1745. Doi: 10.1081/PLN-200026409

Carrizo, C. 2011. Fruit characteristics, seed production and pollen tube growth in the wild chilli pepper Capsicum flexuosum. Flora 206, 334-340. Doi: 10.1016/j.flora.2010.05.008

Cepeda, A. 2018. Estudio del crecimiento y desarrollo del fruto de manzana ‘Anna’ (Malus domestica Borkh.) y relación semilla fruto bajo condiciones del trópico alto. MSc thesis. Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.

Cerri, M. and L. Reale. 2020. Anatomical traits of the principal fruits: An overview. Sci. Hortic. 270, 109390. Doi: 10.1016/j.scienta.2020.109390

Chao, C.-C.T. 2005. Pollination study of mandarins and the effect on seediness and fruit size: implications for seedless mandarin production. HortScience 40, 362-365. Doi: 10.21273/HORTSCI.40.2.362

Copeland, L.O. and M.B. McDonald. 2001. Principles of seed science and technology. 4th ed. Kluwer Academic Publishers, Norwell, MA. Doi: 10.1007/978-1-4615-1619-4

Crane, J. 1964. Growth substances in fruit setting and development. Annu. Rev. Plant Physiol. 15, 303-326. Doi: 10.1146/annurev.pp.15.060164.001511

Davenport, T.L. and M.M. Manners. 1982. Nucellar senescence and ethylene production as they relate to avocado fruitlet abscission. J. Exp. Bot. 33, 815-25. Doi: 10.1093/jxb/33.4.815

De Jong, M., C. Mariani, and W.H. Vriezen. 2009a. The role of auxin and gibberellin in tomato fruit set. J. Exp. Bot. 60, 1523-1532. Doi: 10.1093/jxb/erp094

De Jong, M., M. Wolters-Arts, J.L. Garcia-Martinez, C. Mariani, and W.H. Vriezen. 2011. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signaling during tomato fruit set and development. J. Exp. Bot. 62, 617-626. Doi: 10.1093/jxb/erq293

De Jong, M., M. Wolters-Arts, R. Feron, C. Mariani, and W.H. Vriezen. 2009b. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J. 57, 160-170. Doi: 10.1111/j.1365-313X.2008.03671.x

Dorcey, E., C. Urbez, M.A. Blazquez, J. Carbonell, and M.A. Perez-Amador. 2009. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J. 58, 318-332. Doi: 10.1111/j.1365-313X.2008.03781.x

Dos Santos, R.C., S. Nietsche, M.C.T. Pereira, L.M. Ribeiro, M.O. Mercadante-Simões, and B.H.C. dos Santos. 2019. Atemoya fruit development and cytological aspects of GA3-induced growth and parthenocarpy. Protoplasma 256(5), 1345-1360. Doi: 10.1007/s00709-019-01382-2

Drazeta, L., A. Lang, A.J. Hall, R.K. Volz, and P.E. Jameson. 2004. Modeling the influence of seed set on fruit shape in apple. J. Hortic. Sci. Biotechnol. 79, 241-245. Doi: 14620316.2004.11511755

Fischer, G. (ed.). 2012. Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Fischer, G. 2003. Ecofisiología, crecimiento y desarrollo de la feijoa pp. 9-26. In: Fischer, G., D. Miranda, G. Cayón, and M. Mazorra (eds.). Cultivo, poscosecha y exportación de la Feijoa (Acca sellowiana Berg). Produmedios, Bogota.

Fischer, G., P.J. Almanza-Merchán, and F. Ramírez. 2012a. Source-sink relationships in fruit species. A review. Rev. Colomb. Cienc. Hortic. 6(2), 238-253. Doi: 10.17584/rcch.2012v6i2.1980

Fischer, G., F. Ramírez, and P.J. Almanza-Merchán. 2012b. Inducción floral, floración y desarrollo del fruto. pp. 120-140. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Fischer, G., G. Ebert, and P. Lüdders. 2007. Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. J. Appl. Bot. Food Qual. 81(1), 29-35.

Friedrich, G. and M. Fischer. 2000. Physiologische Grundlagen desObstbaues. Verlag Ulmer, Stuttgart, Germany.

Friend, A.P., M.C. Trought, and G.L. Creasy. 2009. The influence of seed weight on the development and growth of berries and live green ovaries in Vitis vinifera L. cvs. Pinot Noir and Cabernet Sauvignon. Aust. J. Grape Wine Res. 15, 166-174. Doi: 10.1111/j.1755-0238.2009.00050.x

Garmendia, A., R. Beltrán, C. Zornoza, F. Breijo, J. Reig, I. Bayona, and H. Merle. 2019. Insect repellent and chemical agronomic treatments to reduce seed number in ‘Afourer’ mandarin. Effect on yield and fruit diameter. Sci. Hortic. 246, 437-447. Doi: 10.1016/j.scienta.2018.11.025

Garner, L.C. and C.J. Lovatt. 2016. Physiological factors affecting flower and fruit abscission of ‘Hass’ avocado. Sci. Hortic. 199, 32-40. Doi: 10.1016/j.scienta.2015.12.009

Ge, Z., A.Y. Cheung, and L. Qu. 2019. Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytologist 222, 687-693. Doi: 10.1111/nph.15645

Gillaspy, G., H. Ben-David, and W. Gruissem. 1993. Fruits: a developmental perspective. Plant Cell 5(10), 1439-1451. Doi: 10.2307/3869794

Goetz, M., L.C. Hooper, S.D. Johnson, J.C.M. Rodrigues, A. Vivian-Smith, and A.M. Koltunow. 2007. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol. 145, 351-366. Doi: 10.1104/pp.107.104174

González, M., E. Baeza, J.L. Lao, and J. Cuevas. 2006. Pollen load affects fruit set, size, and shape in cherimoya. Sci. Hortic. 110, 51-56. Doi: 10.1016/j.scienta.2006.06.015

Grange, R. 1993. Crecimiento del fruto. pp. 449-462. In: Azcón-Bieto, J. and M. Talón (eds.). Fisiología y bioquímica vegetal. McGraw-Hill Interamericana, Bogota.

Gravina, A., C. Fornero, S. Galiger, C. Inzaurralde, C. Fasiolo, and G. Gambetta. 2011. Partenocarpia, polinización cruzada y presencia de semillas en mandarina ‘Afourer.’ 15. Agrociencia Uruguay 15(2), 40-47.

Hartmann, H., D.E. Kester, F.T. Davies, and R.L. Geneve. 2014. Hartmann & Kester's plant propagation: principles and practices. 8th ed. Prentice Hall International, Upper Saddle River, N.J.

Hershkovitz, V., H. Friedman, E.E. Goldschmidt, and E. Pesis. 2009. The role of the embryo and ethylene in avocado fruit mesocarp discoloration. J. Exp. Bot. 60, 791-799. Doi: 10.1093/jxb/ern328

Hershkovitz, V., H. Friedman, E.E. Goldschmidt, and E. Pesis. 2010. Ethylene regulation of avocado ripening differs between seeded and seedless fruits. Postharvest Biol. Technol. 56, 138-146. Doi: 10.1016/j.postharvbio.2009.12.012

Hershkovitz, V., H. Friedman, E.E. Goldschmidt, O. Feygenberg, and E. Pesis. 2011. Effect of seed on ripening control components during avocado fruit development. J. Plant Physiol. 168, 2177-2183. Doi: 10.1016/j.jplph.2011.07.010

Heuvelink, E. and O. Körner. 2001. Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet pepper. Ann. Bot. 88, 69-74. Doi: 10.1006/anbo.2001.1427

Hojsgaard, D. and E. Hörandl. 2019. The rise of apomixis in natural plant populations. Front. Plant Sci. 10, 358. Doi: 10.3389/fpls.2019.00358

Iglesias, D., M. Cercós, J.M. Colmenero-Flores, M.A. Naranjo, G. Ríos, E. Carrera, O. Ruiz-Rivero, I. Lliso, R. Morillon, F.R. Tadeo, and M. Talón. 2007. Physiology of citrus fruiting. Braz. J. Plant Physiol. 19(4), 333-362. Doi: 10.1590/S1677-04202007000400006

Imanishi, S. and I. Hiura. 1975. Relationship between fruit weight and seed content in the tomato. J. Japan. Soc. Hort. Sci. 44(11), 33-40. Doi: 10.2503/jjshs.44.33

Kang, C., O. Darwish, A. Geretz, R. Shahan, N. Alkharouf, and Z. Liu. 2013. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25, 1960-1978. Doi: 10.1105/tpc.113.111732

Kanwar, M.K., A. Bajguz, J. Zhou, and R. Bhardwaj. 2017. Analysis of brassinosteroids in plants. J. Plant Growth Regul. 36(4), 1002-1030. Doi: 10.1007/s00344-017-9732-4

Kataoka, K., Y. Yashiro, T. Habu, K. Sunamoto, and A. Kitajima. 2009. The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits. Sci. Hortic. 123, 228-233. Doi: 10.1016/j.scienta.2009.09.001

Keulemans, J., A. Brusselle, R. Eyssen, J. Vercammen, and G. van Daele. 1996. Fruit weight in apple as influenced by seed number and pollinizer. Acta Hortic. 423, 201-210. Doi: 10.17660/ActaHortic.1996.423.26

Kinet, J. and M. Peet. 1997. Tomato. pp. 207-258. In: Wien, H.C. (ed.). The physiology of vegetable crops. Cabi Publishing, Wallingford, UK.

Kojima, K. 2005. Phytohormones in shoots and fruits of tomato. Apoplast solution and seedless fruit. JARQ 39(2), 77-81. Doi: 10.6090/jarq.39.77

Kubowicz, B.D., L.N. Vanderhoef, and J.B. Hanson. 1982. ATP-dependent calcium transport in plasmalemma preparations from soybean hypocotyls. Effect of hormone treatments. Plant Physiol. 69, 187-191. Doi: 10.1104/pp.69.1.187

Kumar, R., A. Khurana, and A.K. Sharma. 2013. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 65(16), 4561-4575. Doi: 10.1093/jxb/eru277

Lovatt, C.J. 1990. Factors affecting fruit set/early fruit drop in avocado. Calif. Avocado Soc. Yearb. 74, 193-199.

Lu, M.Z., R. Snyder, J. Grant, and M. Tegeder. 2020. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools. Plant J. 101(1), 217-236. Doi: 10.1111/tpj.14533

Maestrelli, A., R. Lo Scalzo, G.L. Rotino, N. Acciarri, A. Spena, G. Vitelli, and G. Bertolo. 2003. Freezing effect on some quality parameters of transgenic parthenocarpic eggplants. J. Food Eng. 56, 285-287. Doi: 10.1016/S0260-8774(02)00270-4

Mantinger, H. 1997. Eine optimale Befruchtung sichert qualitative hochwertige Erträge. Obstbau Weinbau 34(3), 71-75.

Marti, C., D. Orzaez, P. Ellul, V. Moreno, J. Carbonell, and A. Granell. 2007. Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J. 52, 865-876. Doi: 10.1111/j.1365-313X.2007.03282.x

Matsumoto, S., J. Soejima, and T. Maejima. 2012. Influence of repeated pollination on seed number and fruit shape of ‘Fuji’ apples. Sci. Hortic. 137, 131-137. Doi: 10.1016/j.scienta.2012.01.033

Mesejo, C., R. Yuste, C. Reig, A. Martínez-Fuentes, D.J. Iglesias, N. Muñoz-Fambuena, A. Bermejo, M. Germanà, E. Primo-Millo, and M. Agustí. 2016. Gibberellin reactivates and maintains ovary-wall cell division causingfruit set in parthenocarpic Citrus species. Plant Sci. 247, 13-24. Doi: 10.1016/j.plantsci.2016.02.018

Mezzetti, B., L. Landi, T. Pandolfini, and A. Spena. 2004. The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol. 4(4), 1-10. Doi: 10.1186/1472-6750-4-4

Montoya, T., T. Nomura, T. Yokota, K. Farrar, K. Harrison, J.G. Jones, T. Kaneta, Y. Kamiya, M. Szekeres, and G.J. Bishop. 2005. Patterns of dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J. 42(2), 262-269. Doi: 10.1111/j.1365-313X.2005.02376.x

Musacchi, S. and S. Serna. 2018. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 234, 409-430. Doi: 10.1016/j.scienta.2017.12.057

Paliyath, G., J. Subramanian, L. Lim, K. Subramanian, A. Handa, and A. Matto (eds.). 2019. Postharvest biology and nanotechnology. Wiley-Blackwell, New York, NY. Doi: 10.1002/9781119289470

Pandolfini, T. 2009. Seedless fruit production by hormonal regulation of fruit set. Nutrients 1, 168-177. Doi: 10.3390/nu1020168

Pardo, A. and P.A.V. Borges. 2020. Worldwide importance of insect pollination in apple orchards: A review. Agric. Ecosyst. Environ. 293, 106839. Doi: 10.1016/j.agee.2020.106839

Park, M.G., N.K. Joshi, E.G. Rajotte, D.J. Biddinger, J.E. Losey, and B.N. Danforth. 2018. Apple grower pollination practices and perceptions of alternative pollinators in New York and Pennsylvania. Renew. Agric. Food Syst. 35(1), 1-14. Doi: 10.1017/S1742170518000145

Peña, J.F., J. Ayala, G. Fischer, B. Cháves, J.F. Cárdenas, and P. Almanza. 2010. Relaciones semilla-fruto en tres ecotipos de uchuva (Physalis peruviana L.). Rev. Colomb. Cienc. Hortic. 4(1), 43-54. Doi: 10.17584/rcch.2010v4i1.1224

Picken, A.J.F. 1984. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). J. Hortic. Sci. 59, 1-13. Doi: 10.1080/00221589.1984.11515163

Prudent, M., Z.W. Daib, M. Génard, N. Bertin, M. Causse, and P. Vivin. 2014. Resource competition modulates the seed number–fruit sizerelationship in a genotype-dependent manner: A modeling approach in grape and tomato. Ecol. Model. 290, 54-64. Doi: 10.1016/j.ecolmodel.2013.10.023

Ramírez, F. and T.L. Davenport. 2014. Underutilized fruits of the Andes. Environ. Res. J. 8(1), 77-95.

Razdan, M.K. and A.K. Mattoo. 2006. Genetic improvement of solanaceous crops. Vol. 2: Tomato. Science Publishers, Jersey, UK. Doi: 10.1201/b10744

Rotino, G.L., N. Acciarri, E. Sabatini, G. Mennella, R. Lo Scalzo, A. Maestrelli, B. Molesini, T. Pandolfini, J. Scalzo, B. Mezzetti, and A. Spena. 2005. Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnol. 5, 1-8. Doi: 10.1186/1472-6750-5-32

Salim, M., M. Harunur, M. Mofazzal, and M. Zakaria. 2020. Morphological characterization of tomato (Solanum lycopersicum L.) genotypes. J. Saudi Soc. Agric. Sci. 19(3), 233-240. Doi: 10.1016/j.jssas.2018.11.001

Sapir, G., Z. Baras, G. Azmon, M. Goldwaya, S. Shafir, A. Allouche, E. Sternd, and R.A. Stern. 2017. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hortic. 219, 107-117. Doi: 10.1016/j.scienta.2017.03.010

Serrani, J.C., O. Ruiz-Rivero, M. Fos, and J. García-Martínez. 2008. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J. 56, 922-934. Doi: 10.1111/j.1365-313X.2008.03654.x

Serrani, J.C., R. Sanjuán, O. Ruiz-Rivero, M. Fos, and J.L. García-Martínez. 2007. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 145, 246-257. Doi: 10.1104/pp.107.098335

Seymour, G.B., L. Østergaard, N.H. Chapman, S. Knapp, and C. Martin. 2013. Fruit development and ripening. Annu. Rev. Plant Biol. 64, 219-241. Doi: 10.1146/annurev-arplant-050312-120057

Sheffield, C.S. 2014. Pollination, seed set and fruit quality in apple: studies with Osmia lignaria (Hymenoptera: Megachilidae) in the Annapolis valley, Nova Scotia, Canada. J. Pollin. Ecol. 12 120-128. Doi: 10.26786/1920-7603(2014)11

Sorce, C., G. Montanaro, S. Bottega, and C. Spanò. 2017. Indole-3-acetic acid metabolism and growth in young kiwifruit berry. Plant Growth Regul. 82(3), 505-515. Doi: 10.1007/s10725-017-0279-y

Srivastava, A. and A. Handa. 2005. Hormonal regulation of tomato fruit development: A molecular perspective. J. Plant Growth Regul. 24, 67-82. Doi: 10.1007/s00344-005-0015-0

Stephenson, A.G., B. Devlin, and J.B. Horton. 1988. The effects of seed number and prior fruit dominance on the pattern of fruit production in Cucurbita pepo (Zucchini squash). Ann. Bot. 62, 653-661. Doi: 10.1093/oxfordjournals.aob.a087705

Sun, L., E. Feraru, M.I. Feraru, S. Waidmann, W. Wang, G. Passaia, Z.-Y. Wang, K. Wabnik, and J. Kleine-Vehn. 2020. PIN-LIKES coordinate brassinosteroid signaling with nuclear auxin input in Arabidopsis thaliana. Current Biol. 30(9), 15791588. Doi: 10.1016/j.cub.2020.02.002

Sun, X., D. Shantharaj, and M. Ni. 2010. Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr. Opin. Plant Biol. 13, 611-620. Doi: 10.1016/j.pbi.2010.08.009

Taiz, L., E. Zeiger, I.A. Moller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.

Talón, M., P. Hedden, and E. Primo-Millo. 1990. Gibberellins in Citrus sinensis: A comparison between seeded and seedless varieties. J. Plant Growth Regul. 9, 201-206. Doi: 10.1007/BF02041963

Tamburini, G., R. Bommarco, D. Kleijn, and W.H. van der Putten. 2019. Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agric. Ecosyst. Environ. 280, 16-23. Doi: 10.1016/j.agee.2019.04.022

Thanopoulos, Ch., D. Bouranis, and H.C. Passam. 2013. Comparative development, maturation and ripening of seedless and seed-containing bell pepper fruits. Sci. Hortic. 164, 573-577. Doi: 10.1016/j.scienta.2013.10.010

Tiwari, A., H. Dassen, and E. Heuvelink. 2007. Selection of sweet pepper (Capsicum annuum L.) genotypes for parthenocarpic fruit growth. Acta Hortic. 761,135-140. Doi: 10.17660/ActaHortic.2007.761.16

Tomala, K. 1999. Orchard factor affecting fruit storage quality and prediction of harvest date of apples. Acta Hortic. 485, 379-382. Doi: 10.17660/ActaHortic.1999.485.52

Van der Knaap, E. and L. Østergaard. 2018. Shaping a fruit: Developmental pathways that impact growth patterns. Sem. Cell Dev. Biol. 79, 27-36. Doi: 10.1016/j.semcdb.2017.10.028

Van-Huizen, R., J.A. Ozga, and M. Reinceke. 1996. Influence of auxin and gibberellin on in vivo protein synthesis during early pea fruit growth. Plant Physiol. 112, 53-59. Doi: 10.1104/pp.112.1.53

Varga, A. and J. Bruinsma. 1986. Tomato. pp. 461-481. In: Monselise, S.P. (ed.). Handbook of fruit set and development. CRC Press, Boca Raton, FL.

Varoquaux, F., R. Blanvillain, M. Delseny, and P. Gallois. 2000. Less is better: new approaches for seedless fruit production, Trends Biotechnol. 18, 233-242. Doi: 10.1016/S0167-7799(00)01448-7

Vriezen, W., R. Feron, F. Maretto, J. Keijman, and C. Mariani. 2008. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 177, 60-76. Doi: 10.1111/j.1469-8137.2007.02254.x

Wang, H., N. Schauer, B. Usadel, P. Frasse, and P. Zouine. 2009. Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21, 1428-1452. Doi: 10.1105/tpc.108.060830

Wu, H., H. Li, H. Chen, Q. Qi, Q. Ding, J. Xue, J. Ding, X. Jiang, X. Hou, and Y. Li. 2019. Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry (Fragaria vesca). BMC Plant Biol. 19(1), 73. Doi: 10.1186/s12870-019-1673-6

Yang, L., D. Liu, W. Hu, Y. Chun, J. Zhang, and Y. Liu. 2020. Fruit characteristics and seed anatomy of 'Majia' pomelo pollinated with cobalt-60 gamma-ray-irradiated pollen. Sci. Hortic. 267, 109335. Doi: 10.1016/j.scienta.2020.109335

Zhang, C., N. Tateishi, and K. Tanabe. 2010. Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia. J. Exp. Bot. 61, 4291-4302. Doi: 10.1093/jxb/erq232


Download data is not yet available.