Phenology growth and yield of grafted tomato plants in the high Andean region of Colombia

Authors

DOI:

https://doi.org/10.17584/rcch.2021v15i1.11667

Keywords:

Solanum lycopersicum, BBCH scale, Degree days, Grafting, Scion × rootstock

Abstract

The BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) scale is a system that helps producers monitor phenology by employing a uniform methodology across different locations. This study aimed to evaluate the effect of different scion×rootstock combinations on tomato yield and accumulated degree days for each tomato phenological stage. A randomized block design with four repetitions and four treatments was used. Tomato cv. Libertador seedlings were used as a shoot, self-grafted, and over the rootstocks ‘Olimpo’ and ‘Armada’. In addition, there was a non-grafted plant control. There were no significant differences for the accumulated degree days between the treatments since the tomato cultivation required 2,567°Cd-1. The variables, such as plant height, internode number and length, and number of flowers, did not vary significantly between the grafting and non-grafting treatments. The tomato plants grafted over a vigor rootstock produced 39.4 and 20.6% more first category fruits and total fruit yield than non-grafted ones. The heat units necessary to complete the tomato production cycle was not affected by the grafting, and the use of a vigor rootstock had a positive effect on the tomato yield under plastic house conditions.

JEL Classification

Array

Downloads

Download data is not yet available.

References

Chaudhari S., K.M., D.W. Jennings, D.L. Monks, C.C. Jordan, S.J. Gunter, S.L. Mcgowen, and F.J. Louws. 2016. Critical period for weed control in grafted and nongrafted fresh market tomato. Weed Sci. 64, 523-530. Doi: 10.1614/WS-D-15-00049.1

Costa, M.J. and E. Heuvelink. 2018. The global tomato industry. pp. 1-26. In: Heuvelink, E. (ed.). Tomatoes. 2nd ed. CABI, Boston, MA. Doi: 10.1079/9781780641935.0001

Cuong, D.C. and M. Tanaka. 2019. Effects of integrated environmental factors and modelling the growth and development of tomato in greenhouse cultivation. Id 012021. In: IOP Conference Series: Earth and Environmental Science. Vol. 301, IOP Publishing, Chonburi, Thailand. Doi: 10.1088/1755-1315/301/1/012021

FAO. 2020. FAOSTAT database for production crops. In: http://www.fao.org/faostat/en/#data/QC; consulted: March, 2020.

Fatemi, M. and H. Dehghan. 2019. Growing degree days zonation of plants in Iran according to thermal characteristics. Theor. Appl. Climatol. 138, 877-886. Doi: 10.1007/s00704-019-02868-y

Fraisse, C.W. and S.V. Paula-Moraes. 2018. Degree-days: Growing, heating, and cooling. Publication #ABE381/AE428, rev. 4/2018. UF/IFAS Extension, Gainesville, FL. Doi: 10.32473/edis-ae428-2018

Feller, C., H. Bleiholder, M. Hess. U. Meier, T. Van Den Boom, D.L. Peter, L. Buhr, H. Hack, R. Klose, R. Stauss, E. Weber, and M. Philipp. 1997. Compendium of growth stage identification keys for mono and dicotyledonous plants extended BBCH scale. 2nd ed. In: https://www.hortiadvice.dk/upl/website/bbch-skala/scaleBBCH.pdf; consulted: March, 2020.

Gadioli, J.L., D. Dourado-Neto, A. García, and M.D. Valle Basanta. 2000. Temperatura do ar, rendimento de grãos de milho e caracterização fenológica associada à soma calórica. Sci. Agric. 57, 377-383. Doi: 10.1590/S0103-90162000000300001

Gaion, L.A., L.T. Braz, and R.F. Carvalho. 2018. Grafting in vegetable crops: A great technique for agriculture. Int. J. Veg. Sci. 24, 1-18. Doi: 10.1080/19315260.2017.1357062

García-Rojas, F. and E. Pire. 2008. Estudio fenológico de cinco cultivares de tomate (Lycopersicon esculentum Mill.) en Tarabana, Estado Lara, Venezuela. Proc. Interamer. Soc. Trop. Hort. 52, 61-64.

Heuvelink, E., T. Li, and M. Dorais. 2018. Crop growth and yield. pp. 89-136. In: Heuvelink, E. (ed.). Tomatoes. 2nd ed. CABI, Boston, MA. Doi: 10.1079/9781780641935.0089

Khah, E.M., E. Kakava, A. Mavromatis, D. Chachalis, and C. Goulas. 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J. Appl. Hort. 8, 3-7. Doi: 10.37855/jah.2006.v08i01.01

Kyriacou, M.C., Y. Rouphael, G. Colla, R. Zrenner, and D. Schwarz. 2017. Vegetable grafting: the implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 8, 741. Doi: 10.3389/fpls.2017.00741

Lee, J.M., C. Kubota, S.J. Tsao, Z. Bie, P.H. Echevarria, L. Morra, and M. Oda. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 127, 93-105. Doi: 10.1016/j.scienta.2010.08.003

Lucas, D.D.P., N.A. Streck, M.P. Bortoluzzi, R. Trentin, and I.C. Maldaner. 2012. Temperatura base para emissão de nós e plastocrono de plantas de melancia. Rev. Ciênc. Agron. 43, 288-292. Doi: 10.1590/S1806-66902012000200011

Meena, O.P., and V. Bahadur. 2015. Breeding potential of indeterminate tomato (Solanum lycopersicum L.) accessions using D2 analysis. J. Breed. Genet. 47, 49-59.

Meier, U. 1997. Growth stages of mono and dicotyledoneous plants. Blackwell Wissenschafts-Verlag Science, Berlin.

Mendoza-Pérez, C., C. Ramírez-Ayala, W. Ojeda-Bustamante, C. Trejo, A. López-Ordaz, A. Quevedo-Nolasco, and A. Martínez-Ruiz. 2018. Response of tomato (Solanum lycopersicum L.) to water consumption, leaf area and yield with respect to the number of stems in the greenhouse. Rev. FCA Uncuyo 50, 87-104.

Moreno, M.M., A. Cirujeda, J. Aibar, and C. Moreno. 2016. Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.) crop. Soil Res. 54, 207-215. Doi: 10.1071/SR15065

Mutke, S., J. Gordo, J. Climent, and L. Gil. 2003. Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Ann. For. Sci. 6, 527-537. Doi: 10.1051/forest:2003046

Nicola, S., G. Tibaldi, and E. Fontana. 2009. Tomato production systems and their application to the tropics. Proc. IS on tomato in the tropics. Acta Hortic. 821, 27-33. Doi: 10.17660/ActaHortic.2009.821.1

R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Riaño, N.M., G. Tangarife, O.I. Osorio, J.F. Giraldo, C.M. Ospina, D. Obando, L.F. Gómez, and L.F. Jaramillo. 2005. Modelo de crecimiento y captura de carbono para especies forestales en el trópico. Ministerio de Agricultura y Desarrollo Rural; Fedecafé; Cenicafé; CONIF, Manizales, Colombia.

Soare, R., M. Dinu, and C. Babeanu. 2018. The effect of using grafted seedlings on the yield and quality of tomatoes grown in greenhouses. Hort. Sci. 45, 76-82. Doi: 10.17221/214/2016-HORTSCI

Soe, D.W., Z.Z, Win, A.A. The, and K.T. Myint. 2018. Effects of different rootstocks on plant growth, development and yield of grafted tomato (Lycopersicon esculentum Mill.). J. Agric. Res. 5, 30-38.

Sora, D., D. Mădălina, E.M. Drăghici, and M.I. Bogoescu. 2019. Effect of grafting on tomato fruit quality. Not. Bot. Horti. Agrobo. 47, 1246-1251. Doi: 10.15835/nbha47411719

Sridhar, V. and P.V.R. Reddy. 2013. Use of degree days and plant phenology: A reliable tool for predicting insect pest activity under climate change conditions. pp. 287-294. In: Singh, H.C.P., N.K.S. Rao, and K.S. Shivashankara (eds.). Climate-resilient horticulture: Adaptation and mitigation strategies. Springer, New Delhi. Doi: 10.1007/978-81-322-0974-4

Thwe, A.A., P. Kasemsapb, G. Vercambrec, F. Gayd, J. Phattaralerphonge, and H. Gautierc. 2020. Impact of red and blue nets on physiological and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill.). Sci. Hort. 264, 109185. Doi: 10.1016/j.scienta.2020.109185

Zalom, F.G. and L.T. Wilson. 1999. Predicting phenological events of California processing tomatoes. Acta Hortic. 487, 41-47. Doi: 10.17660/ActaHortic.1999.487.2

Zeist, A.R., J.T.V.D. Resende, M.V. Faria, A. Gabriel, I.F.L.D. Silva, and R.B.D. Lima Filho. 2018. Base temperature for node emission and plastochron determination in tomato species and their hybrids. Pesq. Agropec. Bras. 53, 307-315. Doi: 10.1590/s0100-204x2018000300005

Zeist, A.R., J.T. Resende, I.F. Silva, J.R. Oliveira, C.M. Faria, and C.L. Giacobbo. 2017. Agronomic characteristics of tomato plant cultivar Santa Cruz Kada grafted on species of the genus Solanum. Hortic. Bras. 35, 419-424. Doi: 10.1590/s0102-053620170317

Zhou, G. and Q.A. Wang. 2018. A new nonlinear method for calculating growing degree days. Sci. Rep. 8, 10149. Doi: 10.1038/s41598-018-28392-z
BBCH 71 First fruit cluster: first fruit has reached typical size and form. Photo: O.J. Córdoba-Gaona

Downloads

Published

2021-01-01

How to Cite

Ramírez-Jiménez, J. A., Hoyos-Carvajal, L. M., & Córdoba-Gaona, O. de J. (2021). Phenology growth and yield of grafted tomato plants in the high Andean region of Colombia. Revista Colombiana De Ciencias Hortícolas, 15(1), e11667. https://doi.org/10.17584/rcch.2021v15i1.11667

Issue

Section

Vegetable section

Metrics

Most read articles by the same author(s)