Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Uso potencial de nanopartículas de plata sintetizadas electroquímicamente sobre el patógeno del tizón de la panícula del arroz, Burkholderia glumae

Bacterial panicle blight caused by Burkholderia glumae. Photo: H.A. Padilla

Resumen

Burkholderia glumae es el principal agente causal del tizón bacteriano de panícula en el arroz (Oriza sativa), una enfermedad que genera pérdidas en la producción mundial. A pesar de su importancia económica, todavía no se dispone de medidas eficaces de control ni de variedades de arroz con resistencia total a la enfermedad. En este estudio se evaluó la actividad antimicrobiana de las nanopartículas de plata sintetizadas electroquímicamente (AgNPs) contra B. glumae. Para la síntesis de AgNPs se utilizó una fuente de alimentación DC (UNI-T®) regulada a 24 V, que se conectó a dos electrodos cilíndricos de plata de alta pureza (Aldrich-99,99%), utilizando agua destilada como electrolito. La concentración de AgNPs se determinó midiendo los sólidos disueltos totales (TDS) a través del multiparámetro HandyLab 680 FK. La actividad antibacteriana de estas nanopartículas contra B. glumae se determinó por el método de macrodilución de caldo, a diferentes concentraciones (1-10 mg L-1). La concentración mínima inhibitoria (CMI) se determinó en 5 mg L-1 de AgNPs. Los resultados de este estudio revelaron que las AgNPs podrían considerarse como nanoplaguicidas prometedores para controlar el tizón bacteriano de panícula en el arroz.

Palabras clave

Plata coloidal, Concentración mínima inhibitoria, Nanoesticida, Oryza sativa L.

PDF (English)

Referencias

  • Ahmed, T., Z. Wu, H. Jiang, J. Luo, M. Noman, M. Shahid, I. Manzoor, K. S. Allemailem, F. Alrumaihi, and B. Li. 2021. Bioinspired green synthesis of zinc oxide nanoparticles from a native Bacillus cereus Strain RNT6: characterization and antibacterial activity against rice panicle blight pathogens Burkholderia glumae and B. gladioli. Nanomaterials 11(4), 11040884. Doi: https://doi.org/10.3390/nano11040884
  • Ali, M.A., T. Ahmed, W. Wu, A. Hossain, R. Hafeez, M. M. Islam Masum, Y. Wang, Q. An, G. Sun, and B. Li. 2020. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10(6), 10061146. Doi: https://doi.org/10.3390/nano10061146
  • Avila-Quezada, D.G. and G.P. Espino-Solis. 2020. Silver nanoparticles offer effective control of pathogenic bacteria in a wide range of food products. IntechOpen. Doi: https://doi.org/10.5772/intechopen.89403
  • Banjara, R.A., S.K. Jadhav, and S.A. Bhoite. 2012. MIC for determination of antibacterial activity of Di-2-ethylaniline phosphate. J. Chem. Pharm. Res. 4(1), 648-652.
  • Cho, H.S., S.Y. Park, C.M. Ryu, J.F. Kim, J.G. Kim, and S.H. Park. 2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol. 60(1), 14-23. Doi: https://doi.org/10.1111/j.1574-6941.2007.00280.x
  • Dakal, T.C., A. Kumar, R.S. Majumdar, and V. Yadav. 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 7, 1831. Doi: https://doi.org/10.3389/fmicb.2016.01831
  • Gupta, N., C.P. Upadhyaya, A. Singh, K.A. Abd-Elsalam, and R. Prasad. 2018. Applications of silver nanoparticles in plant protection. pp. 247-265. In: Abd-Elsalam, K.A. and R. Prasad (eds.). Nanobiotechnology applications in plant protection. nanotechnology in the life sciences. Springer, Cham, Switzerland. Doi: https://doi.org/https://doi.org/10.1007/978-3-319-91161-8_9
  • Hai-Jun, C., W. Hui, and Z. Jing-Ze. 2020. Phytofabrication of silver nanoparticles using three flower extracts and their antibacterial activities against pathogen Ralstonia solanacearum strain yy06 of bacterial wilt. Front. Microbiol. 2110, 1-11. Doi: https://doi.org/https://doi.org/10.3389/fmicb.2020.02110
  • Khalil, N.M., M.N. Abd El-Ghany, and S. Rodriguez-Couto. 2019. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere 218, 477-486. Doi: https://doi.org/10.1016/j.chemosphere.2018.11.129
  • Khan, M., A.U. Khan, N. Bogdanchikova, and D. Garibo 2021. Antibacterial and antifungal studies of biosynthesized silver nanoparticles against plant parasitic nematode Meloidogyne incognita, plant pathogens Ralstonia solanacearum and Fusarium oxysporum. Molecules 26(9), 26092462. Doi: https://doi.org/10.3390/molecules26092462
  • Khaydarov, R.A., R.R. Khaydarov, O. Gapurova, Y. Estrin, and T. Scheper. 2009. Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res. 11(5), 1193-1200. Doi: https://doi.org/https://doi.org/10.1007/s11051-008-9513-x
  • Kim, S.W., J.H. Jung, K. Lamsal, Y.S. Kim, J.S. Min, and Y.S. Lee. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiol. 40(1), 53-58. Doi: https://doi.org/10.5941/MYCO.2012.40.1.053
  • Lallo Da Silva, B., M.P. Abuçafy, E. Berbel Manaia, J.A. Oshiro Junior, B.G. Chiari-Andréo, R.C.R. Pietro, and L.A. Chiavacci. 2019. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomed. 14, 9395-9410. Doi: https://doi.org/10.2147/ijn.s216204
  • Liao, C., Y. Li, and S. Tjong. 2019. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 20(2), 449. Doi: https://doi.org/10.3390/ijms20020449
  • Loo, Y.Y., Y. Rukayadi, M.-A.-R. Nor-Khaizura, C.H. Kuan, B.W. Chieng, M. Nishibuchi, and S. Radu. 2018. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol. 9, 1555. Doi: https://doi.org/10.3389/fmicb.2018.01555
  • Losasso, C., S. Belluco, V. Cibin, P. Zavagnin, I. Mičetić, F. Gallocchio, M. Zanella, L. Bregoli, G. Biancotto, and A. Ricci. 2014. Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Front. Microbiol. 5, 227. Doi: https://doi.org/10.3389/fmicb.2014.00227
  • Maloy, O.C. and A. Baudoin. 2001. Disease control principles. In: Maloy, O.C. and T.D. Murray (eds.). Encyclopedia of plant pathology. Wiley, New York, NY.
  • Mikhailova, E.O. 2020. Silver nanoparticles: mechanism of action and probable bio-application. J. Funct. Biomater. 11(4), 84. Doi: https://doi.org/10.3390/jfb11040084
  • Ortega, L. and C.M. Rojas. 2021. Bacterial panicle blight and Burkholderia glumae: from pathogen biology to disease control. Phytopathology 111(5), 772-778. Doi: https://doi.org/10.1094/PHYTO-09-20-0401-RVW
  • Padilla-Sierra, H.A., G. Peña-Rodriguez, and G. Chaves-Bedoya. 2021. Silver colloidal nanoparticles by electrochemistry: temporal evaluation and surface plasmon resonance. J. Physics: Conf. Ser. 2046, 012064. Doi: https://doi.org/doi:10.1088/1742-6596/2046/1/012064
  • Pedraza, L.A., J. Bautista, and D. Uribe-Vélez. 2018. Seed-born Burkholderia glumae infects rice seedling and maintains bacterial population during vegetative and reproductive growth stage. Plant Pathol. J. 34(5), 393-402. Doi: https://doi.org/10.5423/ppj.oa.02.2018.0030
  • Rajeshkumar, S. and C. Malarkodi. 2014. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl. 2014, 581890. Doi: https://doi.org/10.1155/2014/581890
  • Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671-675. Doi: https://doi.org/10.1038/nmeth.2089
  • Shanmuganathan, R., D. MubarakAli, D. Prabakar, H. Muthukumar, N. Thajuddin, S.S. Kumar, and A. Pugazhendhi. 2018. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ. Sci. Pollut. Res. Int. 25(11), 10362-10370. Doi: https://doi.org/10.1007/s11356-017-9367-9
  • Shew, A.M., A. Durand-Morat, v Nalley, X.-G. Zhou, C. Rojas, and G. Thoma. 2019. Warming increases bacterial panicle blight (Burkholderia glumae) occurrences and impacts on USA rice production. Plos ONE 14(7), e0219199. Doi: https://doi.org/10.1371/journal.pone.0219199
  • Vila Dominguez, A., R. Ayerbe Algaba, A. Miro Canturri, A. Rodriguez Villodres, and Y. Smani. 2020. Antibacterial activity of colloidal silver against gram-negative and gram-positive bacteria. Antibiotics 9(1), 9010036. Doi: https://doi.org/10.3390/antibiotics9010036
  • Voget, S., A. Knapp, A. Poehlein, C. Vollstedt, W. Streit, R. Daniel, and K.-E. Jaeger. 2015. Complete genome sequence of the lipase producing strain Burkholderia glumae PG1. J. Biotechnol. 204, 3-4. Doi: https://doi.org/10.1016/j.jbiotec.2015.03.022
  • Vu, X., T. Duong, T. Pham, D. Trinh, X. Nguyen, and V. Dang. 2018. Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus. Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 025019.
  • Wang, L., C. Hu, and L. Shao. 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227-1249. Doi: https://doi.org/10.2147/ijn.s121956
  • Xin-Gen, Z. 2019. Sustainable strategies for managing bacterial panicle blight in rice. In: Jia, Y. (ed.). Protecting rice grains in the post-genomic era. IntechOpen. Doi: https://doi.org/https://doi.org/10.5772/intechopen.84882
  • Zhang, X.-F., Z.-G. Liu, W. Shen, and S. Gurunathan. 2016. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534. Doi: https://doi.org/10.3390/ijms17091534
  • Zhou-Qi, C., Z. Bo, X. Guan-Lin, L. Bin, and H. Shi-Wen. 2016. Research status and prospect of Burkholderia glumae, the pathogen causing bacterial panicle blight. Rice Sci. 23(3), 111-118. Doi: https://doi.org/10.1016/j.rsci.2016.01.007

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a