Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto de la compatibilidad portainjerto/copa en la composición de nutrientes en frutos y hojas del aguacate (Persea americana Mill.) cv. Hass en Colombia

Rootstock/scion compatibility (left) and incompatibility (right). Photo: L.E. Cano-Gallego

Resumen

En Colombia, para aguacate cv. Hass, hay limitada información sobre el efecto de la compatibilidad del portainjerto sobre la cantidad y concentración de los nutrientes en el aguacate cv. Hass. El presente estudio tuvo como objetivo cuantificar el efecto de la compatibilidad patrón/copa sobre la concentración de nutrientes en hojas y frutos de aguacate. Esta investigación se desarrolló en huertos comerciales de aguacate ‘Hass’ de 9 años, en tres localidades (Rionegro, El Peñol y Anserma) del clima frio moderado en Colombia. El cv. Hass fue injertado sobre portainjertos de origen antillano. Para tal fin, se seleccionaron y marcaron 15 árboles en cada huerto y localidad, de los cuales se tomaron al azar 25 frutos por árbol y por tratamiento (injertos compatibles e incompatibles); posteriormente, se obtuvo el peso fresco y seco de la piel (epicarpio), pulpa (mesocarpio), semilla y cubierta seminal. En cada tejido se analizó la concentración de elementos mayores y menores. No se presentó un efecto significativo en la concentración de los nutrientes en el fruto en árboles con y sin compatibilidad entre el patrón y la copa. Se presentaron diferencias estadísticas en la concentración de los nutrientes en las diferentes partes del fruto a través de localidades. El nutriente con mayor concentración en los cuatro tejidos del fruto fue K, seguido de N. La cubierta seminal fue la estructura con mayor concentración de nutrientes para las tres localidades. El embrión presentó la más baja concentración de los elementos mayores como N, K, Ca, Mg, S y P. El orden en la concentración en los tejidos del fruto fue: K> N> Mg> P> Ca> S> Fe> B> Zn> Mn. La compatibilidad no mostró diferencias significativas entre el contenido en hojas de los elementos minerales, ni tampoco afectó los balances de nutrientes para cada elemento a nivel foliar.

Palabras clave

Cáscara, Pulpa, Cubierta seminal, Contenido nutricional, Compatilidad del injerto, Frutas tropicales

PDF (English)

Referencias

  • Acevedo-Chávez, J.A. and E. Sánchez-Cháves. 2017. Eficiencia del uso de portainjerto sobre el rendimiento y dinámica nutricional foliar de macronutrientes en pimiento morrón. Rev. Mex. Cienc. Agric. 8(3), 685-693. Doi: https://doi.org/10.29312/remexca.v8i3.41
  • Albacete, A., C. Martínez-Andújar, A. Martínez-Pérez, A.J. Thompson, I.C. Dodd, and F. Pérez-Alfocea. 2015. Unravelling rootstock×scion interactions to improve food security. J. Exp. Bot. 66(8), 2211-2226. Doi: https://doi.org/10.1093/jxb/erv027
  • Andrews, K.P. and C.S. Serrano Marquez. 1993. Graft incompatibility. pp. 183-232. In: Janick, J. (ed.). Horticultural reviews. Vol. 15. Wiley, Hoboken, NJ. Doi: https://doi.org/10.1002/9780470650547.ch5
  • Balducci, F., L. Capriotti, L. Mazzoni, I. Medori, A. Albanesi, B. Giovanni, F. Giampieri, B. Mezzetti, and F. Capocasa. 2019. The rootstock effects on vigor, production, and fruit quality in sweet cherry (Prunus avium L.). J. Berry Res. 9(2), 249-265. Doi: https://doi.org/10.3233/JBR-180345
  • Basile, B., J. Marsal, and T.M. DeJong. 2003. Daily shoot extension growth of peach trees growing on rootstocks that reduce scion growth is related to daily dynamics of stem water potential. Tree Physiol. 23(10), 695-704. Doi: https://doi.org/10.1093/treephys/23.10.695
  • Belmonte-Ureña, L.J., J.A. Garrido-Cardenas, and F. Camacho-Ferre. 2020. Analysis of world research on grafting in horticultural plants. HortScience 55(1), 112-120. Doi: https://doi.org/10.21273/HORTSCI14533-19
  • Bernal, J.A. 2016. Estudios ecofisiológicos en aguacate cv. Hass en diferentes ambientes como alternativa productiva en Colombia. PhD thesis. Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Medellin, Colombia.
  • Bernal Estrada, J.A. and C.A. Díaz Díez. 2020. Generalidades del cultivo. pp 77-305. In: Bernal Estrada, J.A. and C.A. Díaz Díaz (eds.). Actualización y buenas prácticas agrícolas (BPA) en el cultivo de aguacate. 2nd ed. Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera, Colombia. Doi: https://doi.org/10.21930/agrosavia.manual.7403831
  • Cardona, J.M. and S. Fernández Vásquez. 2005. Mediciones y observaciones. pp. 37-51. In: Cardona, J.M. and S. Fernández Vásquez (eds.). Guía de levantamiento de parcelas de inventario forestal. Silvano, Caldas, Colombia. Doi: https://doi.org/10.13140/RG.2.1.3839.0888
  • Chaplin, M.H. and M.N. 1980. Nutritional status of ‘Bartlett’ pear on Cydonia and Pyrus species rootstocks. J. Am. Soc. Hort. Sci. 105(1), 60-63. Doi: https://doi.org/10.21273/JASHS.105.1.60
  • Chen, Z., J. Zhao, Y. Qin, and G. Hu. 2016. Study on the graft compatibility between ‘Jinganghongnuo’ and other litchi cultivars. Sci. Hortic. 199, 56-62. Doi: https://doi.org/10.1016/j.scienta.2015.12.020
  • Colla, G., C.M. Cardona Suarez, M. Cardarelli, and Y. Rouphael. 2010. Improving nitrogen use efficiency in melon by grafting. HortScience 45(4), 559-565. Doi: https://doi.org/10.21273/HORTSCI.45.4.559
  • Davies, F.T., R.L. Genéve, and S.B. Wilson. 2018. Hartmann and Kester's plant propagation. Principles and practices. 9th ed. Pearson, New York, NY. Doi: https://doi.org/10.21273/HORTSCI535bkrev-17
  • Davis, A.R., P. Perkins-Veazie, R. Hassell, A. Levi, S.R. King, and X. Zhang. 2008a. Grafting effects on vegetable quality. HortScience 43(6), 1670-1672. Doi: https://doi.org/10.21273/HORTSCI.43.6.1670
  • Davis, A.R., C.L. Webber III, P. Perkins-Veazie, V. Ruso, S. López Galarza, and Y. Sakata. 2008b. A review of production systems on watermelon quality. pp. 515-520. In: Pirat, M. (ed.) Proc. 9th EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. INRA, Avignon, France.
  • Djuric, B. and Z. Keserovic. 1999. Study on the possibilities of use of black thorn (Prunus spinosa L.) as an interstock in apricot growing in dense groves. Acta Hortic. 488, 533-538. Doi: https://doi.org/10.17660/ActaHortic.1999.488.86
  • FAO. 2022. Faostat Online Database. Available at: http://www.faostat.fao.org/; consulted: September, 2022.
  • Gaillard, J.P. and J. Godefroy. 1995. Avocado. In: Coste, R. (ed.). The tropical agriculturist series. CTA/Macmillan Education, London.
  • Gazit, S. and C. Degani. 2007. Biología reproductiva. pp. 103-131. In: Whiley, A., B. Schaffer, and B. Wolstenholme (eds.). El palto, botánica, producción y usos. Ediciones Universitarias de Valparaíso, Valparaíso, Chile.
  • Giorgi, M., F. Capocasa, J. Scalzo, G. Murri, M. Battino, and B. Mezzetti. 2005. The rootstock effects on plant adaptability, production, fruit quality, and nutrition in the peach (cv. ‘Suncrest’). Sci. Hortic. 107(1), 36-42. Doi: https://doi.org/10.1016/j.scienta.2005.06.003
  • Goldschmidt, E.E. 2014. Plant grafting: new mechanisms, evolutionary implications. Front. Plant Sci. 5, 727. Doi: https://doi.org/10.3389/fpls.2014.00727
  • Gullo, G., A. Motisi, R. Zappia, A. Dattola, J. Diamanti, and B. Mezzetti. 2014. Rootstock and fruit canopy position affect peach [Prunus persica (L.) Batsch] (cv. Rich May) plant productivity and fruit sensorial and nutritional quality. Food Chem. 153, 234-242. Doi: https://doi.org/10.1016/j.foodchem.2013.12.056
  • Habibi, F., T. Liu, K. Folta, and A. Sarkhosh. 2022. Physiological, biochemical, and molecular aspects of grafting in fruit trees. Hort. Res. 9, uhac032. Doi: https://doi.org/10.1093/hr/uhac032
  • Hartmann, H.T., D.E. Kester, F.T. Davies, and R.L. Geneve. 1990. Plant propagation: principles and practices. 5th ed. Prentice Hall, Eaglewood Cliffs, NJ.
  • Haughn, G. and A. Chaudhury. 2005. Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci. 10(10), 472-477.
  • Herrera-González, J., S. Salazar-García, P. Gutiérrez-Martínez, and I.J.L. González-Durán. 2013. El comportamiento poscosecha de frutos de aguacate ‘Hass' es influenciado por el portainjerto. Rev. Mex. Cienc. Agric. 4(1), 19-32. Doi: https://doi.org/10.29312/remexca.v4i1.1255
  • ICONTEC. 2011. NTC 5404. Calidad del suelo. Determinación de boro. Bogota.
  • Jaramillo, J.D. 1995. Andisoles del oriente antioqueño. Caracterización química y fertilidad. Instituto de Ciencias Naturales y Ecología, Facultad de Ciencias, Universidad Nacional de Colombia, Medellin, Colombia.
  • Kenworthy, A.L. 1973. Leaf analysis as an aid in fertilizing orchards. pp. 381-392. In: Walsh, L.M. and J.D. Beaton (eds.) Soil testing and plant analysis. Soil Sci. Soc. Amer. Madison, WI.
  • Lazare, S., A. Haberman, U. Yermiyahu, R. Erel, E. Simenski, and A. Dag. 2020. Avocado rootstock influences scion leaf mineral content. Arch. Agron. Soil Sci. 66(10), 1399-1409. https://doi.org/10.1080/03650340.2019.1672163
  • Maldonado T., R. 2002. Diagnóstico nutrimental para la producción de aguacate Hass. Informe de investigación. UACH. Texcoco, Mexico.
  • Maldonado-Torres, R., M.E. Álvarez-Sánchez, G. Almaguer-Vargas, A.F. Barrientos-Priego, and R. García-Mateos. 2007. Estándares nutrimentales para aguacatero 'Hass'. Rev. Chapingo Ser. Hortic. 13(1), 103-108. Doi: https://doi.org/10.5154/r.rchsh.2006.11.051
  • Mickelbart, M.V., G.S. Bender, G.W. Witney, C. Adams, and M.L. Arpaia. 2007. Effects of clonal rootstocks on ‘Hass’ avocado yield components, alternate bearing, and nutrition. J. Hort. Sci. Biotechnol. 82(3), 460-466. Doi: https://doi.org/10.1080/14620316.2007.11512259
  • Muñoz, R. 1998. Fertilización de la papa en Antioquia. pp. 28-46. In: Guerrero, R. (ed.), Fertilización de cultivos en clima frío. Monómeros Colombo Venezolanos, Bogota.
  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna.
  • Ramírez Builes, V.H., A. Jaramillo Roblido, A.J. Peña Quiñones, and J.A. Valencia Arbeláez. 2012. El brillo solar en la zona cafetera colombiana, durante los eventos El Niño y La Niña. Avances Técnicos 421(Junio). Cenicafé, Chichina, Colombia.
  • Reyes-Herrera, P.H., L. Muñoz-Baena, V. Velásquez-Zapata, L. Patiño, O.A. Delgado-Paz, C.A. Díaz-Diez, A.A. Navas-Arboleda, and A.J. Cortés. 2020. Inheritance of rootstock effects in avocado (Persea americana Mill.) cv. Hass. Front. Plant Sci. 11, 555071. Doi: https://doi.org/10.3389/fpls.2020.555071
  • Rom, R.C. 1991. Apricot rootstocks: Perspective, utilization and outlook. Acta Hortic. 293, 345-353.
  • Rosati, A., T.M. DeJong, and S.M. Southwick. 1997. Comparison of leaf mineral content, carbon assimilation and stem water potential of two apricot (Prunus armeniaca) cultivars grafted on 'Citation' and 'Marianna 2624' rootstocks. Acta Hortic. 451, 263-268. Doi: https://doi.org/10.17660/ActaHortic.1997.451.29
  • Rubio, M., P. Martínez-Gómez, J. Pinochet, and F. Dicenta. 2008. Evaluation of resistance to sharka (Plum pox virus) of several Prunus rootstocks. Plant Breed. 124(1), 67-70. Doi: https://doi.org/10.1111/j.1439-0523.2004.01068.x
  • Salazar-García, S., I.J.L. González-Durán, and L.M. Tapia-Vargas. 2011. Influencia del clima, humedad del suelo y época de floración sobre la biomasa y composición nutrimental de frutos de aguacate ‘Hass’ en Michoacán, México. Rev. Chapingo Ser. Hortic. 17(2), 183-194. Doi: https://doi.org/10.5154/r.rchsh.2011.17.020
  • Salazar-García, S. and I. Lazcano-Ferrat. 2003. La fertilización en "sitio específico" incrementa los rendimientos y el tamaño de la fruta del aguacate en México. pp. 373-377. In: Proc. 5th World Avocado Congress. Granada and Malaga, Spain.
  • Salazar-García, M., A. Mellado-Vázquez, S. Álvarez-Bravo, M.E. Ibarra-Estrada, and J. González-Valdivia. 2021. Remosión de nutrimentos por frutos de aguacate Méndez. Rev. Fitotec. Mex. 44(2) 151-159. Doi: https://doi.org/10.35196/rfm.2021.2.151
  • Shackel, K.A., H. Ahmadi, W. Biasi, R. Buchner, D. Goldhamer, S. Gurusinghe, J. Hasey, D. Kester, B. Krueger, B. Lampinen, G. McGourty, W. Micke, E. Mitcham, B. Olson, K. Pelletrau, H. Philips, D. Ramos, L. Schwankl, S. Sibbett, R. Snyder, S. Southwick, M. Stevenson, M. Thorpe, S. Weinbaum, and J. Yeager. 1997. Plant water status as an index of irrigation need in deciduous fruit trees. HortTechnol. 7(1), 23-29. Doi: https://doi.org/10.21273/HORTTECH.7.1.23
  • Tamayo V., A., J.A. Bernal E., and C.A. Díaz D. 2018. Composition and removal of nutrients by the harvested fruit of avocado cv. Hass in Antioquia. Rev. Fac. Nac. Agron. Medellín 71(2), 8511-8516. Doi: https://doi.org/10.15446/rfna.v71n2.71929
  • Tamayo, A. and W. Osorio. 2014. Nutrición y fertilización. pp. 182-212. In: Corpoica (ed). Actualización tecnológica y buena prácticas agrícolas (BPA) en el cultivo de aguacate. Medellin, Colombia.
  • Téliz, D. and A. Mora (eds.). 2015. El aguacate y su manejo integrado. 3rd ed. Colegio de Postgraduados, Mundi-Prensa, Mexico, DF.
  • Waltz, M.D. 1996. Utilization of closed-in-place underground storage tanks in the remediation of contaminated soils and groundwater. pp. 359-374. In: Smith, G. and R.F. Hickey (eds.). Biotechnology in Industrial waste treatment and bioremediation. CRC Press, Boca Raton, FL.
  • West, S. and E. Young. 1988. Effects of rootstock and interstocks on seasonal changes in foliar nutrient (N, P, K, Ca) composition of Delicious and Golden apple. Fruit Var. J. 42, 9-12.
  • Yassin, H. and S. Hussen. 2015. Review on role of grafting on yield and quality of selected fruit vegetables. Global J. Sci. Front Res.: D. Agric. Vet. 15(1), 1-15.
  • Yetisir, H. 2001. Effect of grafted seedling on plant growth, fruit yield and quality in watermelon and investigation of grafting point histologically. PhD thesis. Department of Horticulture, Cukurova University, Adana, Turkey.
  • Yetisir, H., E. Özdemir, V. Aras, E. Candır, and Ö. Aslan. 2013. Rootstocks effect on plant nutrition concentration in different organ of grafted watermelon. Agric. Sci. 4(5), 230-237. Doi: https://doi.org/10.4236/as.2013.45033

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.