Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Presencia de elementos contaminantes como Cd, As, Pb, Se y Hg en carbones de la zona Cundiboyacense, Colombia

Resumen

Carbones de la zona cundiboyacence fueron estudiados, con el fin de determinar la presencia y cuantificar los contenidos de elementos contaminantes como: cadmio (Cd), arsénico (As), plomo (Pb), selenio (Se) y mercurio (Hg), estos elementos son comparados con los índices de Clarke para carbones del mismo rango. Las muestras de carbón fueron tomadas de frentes de explotación activa y son analizadas mediante análisis próximos, petrográficos y por espectrometría de masas con plasma acoplado inductivamente (ICP-MS). Los resultados revelan que las muestras analizadas presentan contenidos promedio de metales como Pb (15,5 mg•kg-1), Se (16,5 mg•kg-1), Cd (0,55 mg•kg-1) y As (16,05 mg•kg-1) por encima del promedio mundial para carbones del mismo rango y sus concentraciones son mayores a los carbones de la zona norte carbonífera de Colombia, el contenido de Hg es bajo (< 0,08 mg•kg-1). El contenido de estos elementos genera preocupación ambiental ya que de acuerdo a la Agencia de Protección Ambiental de los Estados Unidos (EPA), el límite máximo permitido para el Se, Pb y Cd es de 0.05 mg•kg-1(ppm). Se sugiere realizar estudios específicos, que permitan la recuperación previa y/o utilización.

Palabras clave

elementos contaminantes, características petrográficas, análisis próximos, carbones, Cundinamarca, Boyacá.

PDF

Biografía del autor/a

Olga Patricia Gómez-Rojas

Ninguna


Referencias

  • Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K., & Rice, C.A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal Coal Geology, 63 (3–4), 247–275. doi:10.1016/j.coal.2005.03.021
  • Chen, Z., Liu, Y., Qin, P., Zhang, B., Lester, L., Chen, C., & Guo, Y. (2015). Environmental externality of coal use in China : Welfare effect and tax regulation. Applied Energy, 156, 16–31. doi:10.1016/j.apenergy.2015.06.066
  • Cutruneo, C. M. N. L., Oliveira, M. L. S., Ward, M. L. S., Hower, J. C., De Brum, I. A. S., Sampaio, C. H., Kautzmann, R. M., Taffarel, S. R., Teixeira, E. C., & Silva, L. F. O. (2014). A mineralogical and geochemical study of three Brazilian coal cleaning rejects : Demonstration of electron beam applications. International Journal of Coal Geology, 130, 33–52. doi:10.1016/j.coal.2014.05.009
  • Dai, S., Chou, C., Yue, M., Luo, K., & Ren, D. (2005). Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield , Guizhou , China : influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal Coal Geology, 61, 241–258. doi:10.1016/j.coal.2004.09.002
  • Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61 (1–2), 119–137. doi:10.1016/j.coal.2004.07.003
  • Dai, S., Wang, X., Seredin, V. V., Hower, J. C., Ward, C. R., O’Keefe, J. M. K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., & Zhao, L. (2012). Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90–91, 72–99. doi:10.1016/j.coal.2011.10.012
  • Diehl, S. F., Goldhaber, M. B., Koenig, A. E., Lowers, H. A., & Ruppert, L. F. (2012). Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals : Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94, 238–249. doi:10.1016/j.coal.2012.01.015
  • E.U.S. Environmental Protection Agency [EPA]. (2015). Policy assessment for the review of the lead national ambient air quality standards. Recuperado de: https://nepis.epa.gov/Exe/ZyNET.exe/P100ITJD.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C11thru15%5CTxt%5C00000010%5CP100ITJD.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
  • Fu, B., Liu, G., Liu, Y., Cheng, S., Qi, C., & Sun, R. (2016). Coal quality characterization and its relationship with geological process of the Early Permian Huainan coal deposits, southern North China. Journal of Geochemical Exploration, 166, 33–44. doi:10.1016/j.gexplo.2016.04.002
  • Jongwana, L.T., & Crouch, A.M. (2012). Mercury speciation in South African coal. Fuel, 94, 234–239. doi:10.1016/j.fuel.2011.09.033
  • Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of clarkes for carbonaceous biolithes : World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78 (2), 135–148. doi:10.1016/j.coal.2009.01.002
  • Kostova, I., Vassileva, C., Dai, C., Hower, J.C., & Apostolova, D. (2013). Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 116–117, 227–235. doi:10.1016/j.coal.2013.03.008
  • Lachas, H., Richaud, R., Herod, A.A., Dugwell, D.R. Kandiyoti, R., & Jarvis, K. E. (1999). Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes. Analyst, 124 (2), 177–184. doi: 10.1039/A807849A
  • Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C. M., & Fávere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal Hazardous Materials, 149 (2), 471–474. doi:10.1016/j.jhazmat.2007.04.012
  • Li, J., Zhuang, X., & Querol, X. (2011). Trace element affinities in two high-Ge coals from China. Fuel, 90 (1), 240–247. doi:10.1016/j.fuel.2010.08.011
  • Li, J., Zhuang, X., Querol, X., Font, O., Izquierdo, M. & Wang, M. (2014). New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125, 10–21. doi:10.1016/j.coal.2014.01.006
  • Liu, G., Zheng, L., Zhang, Y., Qi, C., Chen, Y. & Peng, Z. (2007). Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China. International Journal of Coal Geology, 71 (2–3), 371–385. doi:10.1016/j.coal.2006.12.005
  • Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197. doi:10.1016/j.fuel.2015.04.034
  • Martínez-Bernal, M. S. (2013). Determinación de la productividad y competitividad de la pequeña minería del distrito minero del norte de Boyacá. Revista de Investigación, Desarrollo e Innovación, 3 (2), 72-86. doi: 10.19053/20278306.2168
  • Martínez-Ovalle, S., Reyes-Caballero, F., & González-Puin, L.X. (2013). Protección radiológica a trabajadores y público en instalaciones que operan radioisótopos industriales. Revista de Investigación, Desarrollo e Innovación, 3 (2), 120-124. doi: 10.19053/20278306.2166
  • Morales, W., & Carmona, I. (2007). Estudio de algunos elementos traza en carbones de la cuenca Cesar – Ranchería, Colombia. Boletín ciencias la tierra, 20, 75–87. Recuperado de http://www.revistas.unal.edu.co/index.php/rbct/article/view/728
  • Ohki, A., Taira, M., Hirakawa, S., Haraguchi, K., Kanechika, F., Nakajima, T., & Takanashi, H. (2014). Determination of mercury in various coals from different countries by heat-vaporization atomic absorption spectrometry: Influence of particle size distribution of coal. Microchemical Journal, 114, 119–124. doi:10.1016/j.microc.2013.12.012
  • Saha, D., Chakravarty, S., Shome, D., Basariya, M. R., Kumari, A., Kumar, A., Chatterjee, D., Adhikari, J. & Chatterjee, D. (2016). Distribution and affinity of trace elements in Samaleswari coal, Eastern India. Fuel, 181, 376–388. doi:10.1016/j.fuel.2016.04.134
  • Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. doi:10.1016/j.coal.2011.11.001
  • Seredin, V.V. (2012). From coal science to metal production and environmental protection : A new story of success. International Journal of Coal Geology, 90–91, 1–3. doi:10.1016/j.coal.2011.11.006
  • Seredin, V.V., & Finkelman, R.B. (2008). Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76 (4), 253–289. doi:10.1016/j.coal.2008.07.016
  • Seredin, V.V., Dai, S., Sun, Y., & Chekryzhov, I.Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11. doi:10.1016/j.apgeochem.2013.01.009
  • Stanislav, C. G. V., Vassilev, V., & Eskenazy, G.M. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology, 72 (2), 103-129. doi:10.1016/S0378-3820(01)00186-2
  • Unidad de Planeación Minero-Energética [UPME]. (2005). La cadena del carbón. El carbón colombiano fuente de energía para el mundo. Recuperado de: http://www.upme.gov.co/Docs/Cadena_carbon.pdf
  • Yoshiie, Y., Taya, Y., Ichiyanagi, T., Ueki, Y, & Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108, 67–72. doi:10.1016/j.fuel.2011.06.011
  • Yuepeng, P., Tian, S., Xingru, L., Sun, Y., Li, Y., Wentworth, G. R., & Wang, Y. (2015). Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of Total Environment, 537, 9–22. doi: 10.1016/j.scitotenv.2015.07.060
  • Zhang, J., Ren, D., Zhu, Y., & Chou. (2004). Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou , China. International Journal of Coal Geology, 57, 49–61. doi:10.1016/j.coal.2003.07.001
  • Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K., & Rice, C.A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal Coal Geology, 63 (3–4), 247–275. doi:10.1016/j.coal.2005.03.021 DOI: https://doi.org/10.1016/j.coal.2005.03.021
  • Chen, Z., Liu, Y., Qin, P., Zhang, B., Lester, L., Chen, C., & Guo, Y. (2015). Environmental externality of coal use in China : Welfare effect and tax regulation. Applied Energy, 156, 16–31. doi:10.1016/j.apenergy.2015.06.066 DOI: https://doi.org/10.1016/j.apenergy.2015.06.066
  • Cutruneo, C. M. N. L., Oliveira, M. L. S., Ward, M. L. S., Hower, J. C., De Brum, I. A. S., Sampaio, C. H., Kautzmann, R. M., Taffarel, S. R., Teixeira, E. C., & Silva, L. F. O. (2014). A mineralogical and geochemical study of three Brazilian coal cleaning rejects : Demonstration of electron beam applications. International Journal of Coal Geology, 130, 33–52. doi:10.1016/j.coal.2014.05.009 DOI: https://doi.org/10.1016/j.coal.2014.05.009
  • Dai, S., Chou, C., Yue, M., Luo, K., & Ren, D. (2005). Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield , Guizhou , China : influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal Coal Geology, 61, 241–258. doi:10.1016/j.coal.2004.09.002 DOI: https://doi.org/10.1016/j.coal.2004.09.002
  • Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61 (1–2), 119–137. doi:10.1016/j.coal.2004.07.003 DOI: https://doi.org/10.1016/j.coal.2004.07.003
  • Dai, S., Wang, X., Seredin, V. V., Hower, J. C., Ward, C. R., O’Keefe, J. M. K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., & Zhao, L. (2012). Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90–91, 72–99. doi:10.1016/j.coal.2011.10.012 DOI: https://doi.org/10.1016/j.coal.2011.10.012
  • Diehl, S. F., Goldhaber, M. B., Koenig, A. E., Lowers, H. A., & Ruppert, L. F. (2012). Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals : Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94, 238–249. doi:10.1016/j.coal.2012.01.015 DOI: https://doi.org/10.1016/j.coal.2012.01.015
  • E.U.S. Environmental Protection Agency [EPA]. (2015). Policy assessment for the review of the lead national ambient air quality standards. Recuperado de: https://nepis.epa.gov/Exe/ZyNET.exe/P100ITJD.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C11thru15%5CTxt%5C00000010%5CP100ITJD.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
  • Fu, B., Liu, G., Liu, Y., Cheng, S., Qi, C., & Sun, R. (2016). Coal quality characterization and its relationship with geological process of the Early Permian Huainan coal deposits, southern North China. Journal of Geochemical Exploration, 166, 33–44. doi:10.1016/j.gexplo.2016.04.002 DOI: https://doi.org/10.1016/j.gexplo.2016.04.002
  • Jongwana, L.T., & Crouch, A.M. (2012). Mercury speciation in South African coal. Fuel, 94, 234–239. doi:10.1016/j.fuel.2011.09.033 DOI: https://doi.org/10.1016/j.fuel.2011.09.033
  • Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of clarkes for carbonaceous biolithes : World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78 (2), 135–148. doi:10.1016/j.coal.2009.01.002 DOI: https://doi.org/10.1016/j.coal.2009.01.002
  • Kostova, I., Vassileva, C., Dai, C., Hower, J.C., & Apostolova, D. (2013). Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 116–117, 227–235. doi:10.1016/j.coal.2013.03.008 DOI: https://doi.org/10.1016/j.coal.2013.03.008
  • Lachas, H., Richaud, R., Herod, A.A., Dugwell, D.R. Kandiyoti, R., & Jarvis, K. E. (1999). Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes. Analyst, 124 (2), 177–184. doi: 10.1039/A807849A DOI: https://doi.org/10.1039/a807849a
  • Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C. M., & Fávere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal Hazardous Materials, 149 (2), 471–474. doi:10.1016/j.jhazmat.2007.04.012 DOI: https://doi.org/10.1016/j.jhazmat.2007.04.012
  • Li, J., Zhuang, X., & Querol, X. (2011). Trace element affinities in two high-Ge coals from China. Fuel, 90 (1), 240–247. doi:10.1016/j.fuel.2010.08.011 DOI: https://doi.org/10.1016/j.fuel.2010.08.011
  • Li, J., Zhuang, X., Querol, X., Font, O., Izquierdo, M. & Wang, M. (2014). New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125, 10–21. doi:10.1016/j.coal.2014.01.006 DOI: https://doi.org/10.1016/j.coal.2014.01.006
  • Liu, G., Zheng, L., Zhang, Y., Qi, C., Chen, Y. & Peng, Z. (2007). Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China. International Journal of Coal Geology, 71 (2–3), 371–385. doi:10.1016/j.coal.2006.12.005 DOI: https://doi.org/10.1016/j.coal.2006.12.005
  • Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197. doi:10.1016/j.fuel.2015.04.034 DOI: https://doi.org/10.1016/j.fuel.2015.04.034
  • Martínez-Bernal, M. S. (2013). Determinación de la productividad y competitividad de la pequeña minería del distrito minero del norte de Boyacá. Revista de Investigación, Desarrollo e Innovación, 3 (2), 72-86. doi: 10.19053/20278306.2168 DOI: https://doi.org/10.19053/20278306.2168
  • Martínez-Ovalle, S., Reyes-Caballero, F., & González-Puin, L.X. (2013). Protección radiológica a trabajadores y público en instalaciones que operan radioisótopos industriales. Revista de Investigación, Desarrollo e Innovación, 3 (2), 120-124. doi: 10.19053/20278306.2166 DOI: https://doi.org/10.19053/20278306.2166
  • Morales, W., & Carmona, I. (2007). Estudio de algunos elementos traza en carbones de la cuenca Cesar – Ranchería, Colombia. Boletín ciencias la tierra, 20, 75–87. Recuperado de http://www.revistas.unal.edu.co/index.php/rbct/article/view/728
  • Ohki, A., Taira, M., Hirakawa, S., Haraguchi, K., Kanechika, F., Nakajima, T., & Takanashi, H. (2014). Determination of mercury in various coals from different countries by heat-vaporization atomic absorption spectrometry: Influence of particle size distribution of coal. Microchemical Journal, 114, 119–124. doi:10.1016/j.microc.2013.12.012 DOI: https://doi.org/10.1016/j.microc.2013.12.012
  • Saha, D., Chakravarty, S., Shome, D., Basariya, M. R., Kumari, A., Kumar, A., Chatterjee, D., Adhikari, J. & Chatterjee, D. (2016). Distribution and affinity of trace elements in Samaleswari coal, Eastern India. Fuel, 181, 376–388. doi:10.1016/j.fuel.2016.04.134 DOI: https://doi.org/10.1016/j.fuel.2016.04.134
  • Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. doi:10.1016/j.coal.2011.11.001 DOI: https://doi.org/10.1016/j.coal.2011.11.001
  • Seredin, V.V. (2012). From coal science to metal production and environmental protection : A new story of success. International Journal of Coal Geology, 90–91, 1–3. doi:10.1016/j.coal.2011.11.006 DOI: https://doi.org/10.1016/j.coal.2011.11.006
  • Seredin, V.V., & Finkelman, R.B. (2008). Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76 (4), 253–289. doi:10.1016/j.coal.2008.07.016 DOI: https://doi.org/10.1016/j.coal.2008.07.016
  • Seredin, V.V., Dai, S., Sun, Y., & Chekryzhov, I.Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11. doi:10.1016/j.apgeochem.2013.01.009 DOI: https://doi.org/10.1016/j.apgeochem.2013.01.009
  • Stanislav, C. G. V., Vassilev, V., & Eskenazy, G.M. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology, 72 (2), 103-129. doi:10.1016/S0378-3820(01)00186-2 DOI: https://doi.org/10.1016/S0378-3820(01)00186-2
  • Unidad de Planeación Minero-Energética [UPME]. (2005). La cadena del carbón. El carbón colombiano fuente de energía para el mundo. Recuperado de: http://www.upme.gov.co/Docs/Cadena_carbon.pdf
  • Yoshiie, Y., Taya, Y., Ichiyanagi, T., Ueki, Y, & Naruse, I. (2013). Emissions of particles and trace elements from coal gasification. Fuel, 108, 67–72. doi:10.1016/j.fuel.2011.06.011 DOI: https://doi.org/10.1016/j.fuel.2011.06.011
  • Yuepeng, P., Tian, S., Xingru, L., Sun, Y., Li, Y., Wentworth, G. R., & Wang, Y. (2015). Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of Total Environment, 537, 9–22. doi: 10.1016/j.scitotenv.2015.07.060 DOI: https://doi.org/10.1016/j.scitotenv.2015.07.060
  • Zhang, J., Ren, D., Zhu, Y., & Chou. (2004). Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou , China. International Journal of Coal Geology, 57, 49–61. doi:10.1016/j.coal.2003.07.001 DOI: https://doi.org/10.1016/j.coal.2003.07.001

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.