Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Monitoreo de variables meteorológicas a través de un sistema inalámbrico de adquisición de datos

Resumen

En este artículo se presenta el desarrollo de un sistema para el monitoreo inalámbrico de variables climáticas. El diseño se realizó a partir de microcontroladores de Microchip, los cuales realizan la adquisición, almacenamiento y transmisión inalámbrica de las señales digitales. Igualmente, el microcontrolador emplea un reloj en tiempo real para saber la fecha y hora de adquisición de las muestras. El hardware también cuenta con cinco canales para la conexión de sensores y una  memoria Micro SD para almacenamiento de información, junto con un módulo Wi-Fi para la supervisión inalámbrica de las variables. La información se sube a un servidor que aloja la página web, diseñada para visualizar los datos desde cualquier ordenador con conexión a internet. Adicionalmente, se desarrolló una aplicación Android que permite visualizar los datos desde dispositivos móviles con ese sistema operativo. El rendimiento del sistema fue satisfactorio, luego de comparar los datos adquiridos con los de una estación meteorológica comercial, que sirvió de patrón. Se concluye que los microcontroladores continúan siendo dispositivos adecuados para implementar sistemas de adquisición de datos, que al ser combinados con aplicativos desarrollados a la medida, brindan soluciones competitivas y a un costo razonable.

Palabras clave

adquisición de datos, monitoreo meteorológico, sistema inalámbrico

PDF XML

Biografía del autor/a

Daniel Camilo Ruiz-Ayala

Ingeniero Electrónico

Carlos Arturo Vides-Herrera

Ingeniero Electrónico, Magíster en Controles Industriales

Aldo Pardo-García

Ingeniero Electricista con énfasis en electrónica, Doctor en Ciencias


Citas

  1. Almario-Ospino, R., Ramón-Valencia, B. A., & Ramón-Valencia, J. A. (2011). Sistema de adquisición de datos para el monitoreo de la calidad del agua a través de las variables de pH, conductividad, temperatura y oxígeno disuelto. Revista Colombiana de Tecnologías de Avanzada, 1 (17), 74-80.
  2. Altamirano-Santillán, E., Vallejo-Vallejo, G., & Cruz-Hurtado, J. (2017). Monitoreo volcánico usando plataformas Arduino y Simulink. Revista de Investigación, Desarrollo e Innovación, 7 (2), 317-329. doi: https://doi.org/10.19053/20278306.v7.n2.2017.6073 DOI: https://doi.org/10.19053/20278306.v7.n2.2017.6073
  3. Cargua, S., Cueva, M., Escobar, J., Arciniegas, S., & Nieto-Guerrero, E. D. (2017). Recurso hídrico, clima y sistemas de información geográfica. Polo del Conocimiento, 2 (8), 436-470. Recuperado de: https://polodelconocimiento.com/ojs/index.php/es/article/view/342/pdf DOI: https://doi.org/10.23857/pc.v2i8.342
  4. Figueroa-Cuello, A., Pardo-García, A., & Díaz-Rodríguez, J. (2017). Sistema control supervisor de clientes con acceso remoto para sistemas solares fotovoltaicos autónomos. Revista de Investigación, Desarrollo e Innovación, 7 (2), 367-378. doi: https://doi.org/10.19053/20278306.v7.n2.2017.6104 DOI: https://doi.org/10.19053/20278306.v7.n2.2017.6104
  5. Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia, IDEAM. (2016). Atlas Climatológico de Colombia. Recuperado de: http://www.ideam.gov.co/AtlasWeb/info/Textos/Departamentos/memoNORTESANTANDER.pdf
  6. Márquez-Marín, R. (2004). Diseño de un sistema automatizado de medición y registro de variables climáticas para una estación meteorológica. (Tesis de pregrado). Universidad de Pamplona. Pamplona, Colombia.
  7. Mercado-Ramos, V. H., Zapata, J., & Ceballos, Y. F. (2015). Herramientas y buenas prácticas para el aseguramiento de calidad de software con metodologías ágiles. Revista de Investigación, Desarrollo e Innovación, 6 (1), 73–83. doi: https://doi.org/10.19053/20278306.3277 DOI: https://doi.org/10.19053/20278306.3277
  8. Meteostar (2016). Estación Meteorológica WH-3081 – MeteoStar. Recuperado de: http://www.meteostar.com.ar/descargas/estacion-%20meteorologica-wh3081-meteostar.pdf
  9. Microchip. (2017). Manual de microcontroladores Microchip. Recuperado de: http://www.microchip.com/
  10. Moreno-Anselmi, L. A., Reyes-Ortiz, Ó. J., & Ruíz-Acero, J. C. (2016). Evaluación del comportamiento mecánico de asfalto natural a partir de muestras a temperatura ambiente provenientes de Caquetá, Colombia. Revista de Investigación, Desarrollo e Innovación, 6 (2), 145–154. doi: http://doi.org/10.19053/20278306.3115 DOI: https://doi.org/10.19053/20278306.3115
  11. Moreno-Rubio, J., Jiménez-López, A., & Barrera-Lombana, N. (2013). El amplificador de potencia de carga sintonizada. Revista Colombiana de Tecnologías de Avanzada, 2 (22) 9-13. doi: https://doi.org/10.24054/16927257.v22.n22.2013.404
  12. Organización Meteorológica Mundial, OMM. (2010). Guía de instrumentos y métodos de observación meteorológicos.
  13. Pabón-Fernández, L., Díaz-Rodríguez, J., & Pardo-García, A. (2016). Simulación del inversor multinivel de fuente común como variador de frecuencia para motores de inducción. Revista de Investigación, Desarrollo e Innovación, 7 (1), 165-180. doi: https://doi.org/10.19053/20278306.v7.n1.2016.5636 DOI: https://doi.org/10.19053/20278306.v7.n1.2016.5636
  14. Pardo-García, A., & Castellanos-González, L. (2017). Automatización de ambientes en invernaderos simulando escenarios futuros. Revista Colombiana de Tecnologías de Avanzada, 1 (29). DOI: https://doi.org/10.24054/16927257.v29.n29.2017.2497
  15. Rodríguez-Jiménez, R., Agueda, B., & Portela-lozano, A. (2004). Meteorología y Climatología. España: Fundación Española para la Ciencia y la Tecnología.
  16. Sánchez-Dams, R. D. (2013). Estado del arte del desarrollo de sistemas embebidos desde una perspectiva integrada entre el hardware y software. Revista Colombiana de Tecnologías de Avanzada, 2 (22), 98-105. doi: https://doi.org/10.24054/16927257.v22.n22.2013.416
  17. Sandoval, G., Tobar-Molano, J., Mosquera, V. H., & González, L. J. (2011). Pluviógrafo electrónico con transmisión de datos inalámbrica. Revista Colombiana de Tecnologías de Avanzada, 1 (18), 67-73. doi: https://doi.org/10.24054/16927257.v17.n17.2011.173
  18. Santiago, E. J, & Sánchez-Allende, J. (2016). Diseño de un sistema multiagentes híbrido basado en aprendizaje profundo para la detección y contención de ciberataques. Revista Colombiana de Tecnologías de Avanzada, 2 (28), 115 – 123. doi: https://doi.org/10.24054/16927257.v28.n28.2016.2495 DOI: https://doi.org/10.24054/16927257.v28.n28.2016.2495
  19. Serna-Mendoza, C. A., Vélez-Rojas, O. A., & Londoño-Pineda, A. A. (2016). Cambio climático, balance hídrico y eficiencia energética en algunas estaciones climáticas en Colombia. Revista Espacios, 37 (07). Recuperado de: http://www.revistaespacios.com/a16v37n07/16370707.html
  20. Vargas-Guativa, J. A., López-Velásquez, J. A., & Conde-Cárdenas, L. (2014). Sistema de instrumentación y control para tanques de almacenamiento de agua potable. Ingeniare, 10 (17). Recuperado de: http://www.unilibrebaq.edu.co/ojsinvestigacion/index.php/ingeniare/article/view/416 DOI: https://doi.org/10.18041/1909-2458/ingeniare.17.563
  21. Vázquez, R., Toledo, A., Mason, P., & Canalí, J. (2005). Desarrollo de un procedimiento para construir un Datalogger de bajo presupuesto utilizando un dispositivo genérico, memorias seriales y tarjeta flash SD. II jornadas de investigación en ingeniería del NEA y países limítrofes. Chaco, Argentina: Universidad Tecnológica Nacional en Resistencia.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 1 2 3 4 5 

También puede {advancedSearchLink} para este artículo.