Skip to main navigation menu Skip to main content Skip to site footer

The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review

Cape gooseberry plant with flower buds, flowers and developing fruits in calyx.  Photo: G. Fischer

Abstract

In a literature review of the ecophysiology of cape gooseberry (Physalis peruviana L.) it was found that in Colombia this typical Andean plant adapts to a wide altitudinal range of the tropical cold climate, between 1,800 and 2,800 m a.s.l., with optimal medium temperatures between 13 and 16°C and base (minimum) temperatures for stem and fruit growth of 6.3 and 1.9°C, respectively. However, this fruit does not withstand temperatures <0°C. The Andean conditions of the tropics such as high solar radiation and rather short day lengths <12 hours favor flower initiation. A duration of 1,500-2,000 hours year-1 of direct sunshine are the most favorable for the size, quality and ripening of the fruit. Under field conditions in Bogota we measured a photosynthesis rate of A = 10.545 μmol CO2 m-2 s-1 and light compensation point Ic = 13.645 μmol photons m-2 s-1. As this species with an indeterminate growth habit requires a constant supply of water, while high amounts or heavy rains after a dry season cause cracking of the fruits, the plant does not tolerate waterlogging for more than 4 days. Cape gooseberry is classified as moderately tolerant to salinity and 30 mM NaCl curiously promotes growth, since the plant has mechanisms such as increased antioxidant activity to protect against saline conditions.

Keywords

Temperature, Altitude, Photosynthetic rate, Water, Salinity

PDF

References

  • Aguilar-Carpio, C., P. Juárez-López, I.H. Campos-Aguilar, I. Alia-Tejacal, M. Sandoval-Villa, and V. López-Martínez. 2018. Analysis of growth and yield of cape gooseberry (Physalis peruviana L.) grown hydroponically under greenhouse conditions. Rev. Chapingo Ser. Hortic. 24(3), 191-202. Doi: https://doi.org/10.5154/r.rchsh.2017.07.024
  • Agronet. 2019. Producción nacional por producto: Uchuva. In: https://www.agronet.gov.co/Documents/39-UCHUVA_2017.pdf; consulted: November, 2019.
  • Akbaba, U. 2019. Elements identification in golden strawberries (Physalis peruviana L.) using wavelength dispersive X-Ray fluorescence. Turk. J. Agric. Food Sci. Technol. 7(6), 851-855. Doi: https://doi.org/10.24925/turjaf.v7i6.851-855.2386
  • Aldana, F., P.N. García, and G. Fischer. 2014. Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants. Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 38(149), 393-400. Doi: https://doi.org/10.18257/raccefyn.114
  • Alvarado, P.A., C.A. Berdugo, and G. Fischer. 2004. Efecto de un tratamiento a 1,5°C y dos humedades relativas sobre las características físico-químicas de frutos de uchuva Physalis peruviana L. durante el posterior transporte y almacenamiento. Agron. Colomb. 22(2), 147-159.
  • Álvarez-Herrera, J., H. Balaguera-López, and G. Fischer. 2012. Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Hortic. 928, 163-170. Doi: https://doi.org/10.17660/ActaHortic.2012.928.19
  • Álvarez-Herrera, J., G. Fischer, and J.E. Vélez-Sánchez. 2015. Producción de frutos de uchuva (Physalis peruviana L.) bajo diferentes láminas de riego, frecuencias de riego y dosis de calcio. Rev. Colomb. Cienc. Hortic. 9(2), 222-233. Doi: https://doi.org/10.17584/rcch.2015v9i2.4177
  • Alvarez-Herrera, J., H. González, and G. Fischer. 2019. Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium. Agron. Colomb. 37(3), 274-282. Doi: https://doi.org/10.15446/agron.colomb.v37n3.79935
  • Aparecido, L.E., R.M. Batista, R. Moraes, C.T.S. Costa, and A.F. Moraes-Oliveira. 2019. Agricultural zoning of climate risk for Physalis peruviana cultivation in Southeastern Brazil. Pesqu. Agropecu. Bras. 54, e00057. Doi: https://doi.org/10.1590/s1678-3921.pab2019.v54.00057
  • Baldwin, J.W., J.B. Dessy, G.A. Vecchi, and M. Oppenheimer. 2019. Temporally compound heat wave events and global warming: an emerging hazard. Earth’s Future 7, 411-427. Doi: https://doi.org/10.1029/2018EF000989
  • CABI Invasive Species Compendium. 2019. Physalis peruviana (Cape gooseberry). Detailed coverage of invasive species threatening livelihoods and the environment worldwide. CAB International, Wallingford, UK.
  • Carillo-Perdomo, E., A. Aller, S.M. Cruz-Quintana, F. Giampieri, and J.M. Alvarez-Suarez. 2015. Andean berries from Ecuador: A review on botany, agronomy, chemistry and health potential. J. Berry Res. 5, 49-69. Doi: https://doi.org/10.3233/JBR-140093
  • Chakma, P., M. Hossain, and G. Rabbani. 2019. Effects of salinity stress on seed germination and seedling growth of tomato. J. Bangladesh Agril. Univ. 17(4), 490-499. Doi: https://doi.org/10.3329/jbau.v17i4.44617
  • Cooman, A., C. Torres, and G. Fischer. 2005. Determinación de las causas del rajado del fruto de uchuva (Physalis peruviana L.) bajo cubierta: II. Efecto de la oferta de calcio, boro y cobre. Agron. Colomb. 23 (1), 74-82.
  • Das, H.P. 2012. Agrometeorology in extreme events and natural disasters. BS Publications, Hyderabad, India.
  • Dhankher, O.M. and C.H. Foyer. 2018. Climate resilient crops for improving global food security and safety. Plant Cell Environ. 41, 877-884. Doi: https://doi.org/10.1111/pce.13207
  • Diniz, F.O., L. Chamma, and A.D.L.C. Novembre. 2020. Germination of Physalis peruviana L. seeds under varying conditions of temperature, light, and substrate. Rev. Ciênc. Agron. 51(1), e20166493. Doi: https://doi.org/10.5935/1806-6690.20200003
  • Dostert, N., J. Roque, A. Cano, M.I. La Torre, and M. Weigend. 2012. Hoja botánica: Aguaymanto - Physalis peruviana L. Technical Report. Proyecto Perúbiodiverso, Lima.
  • Dwivedi, P. and R.S. Dwivedi. 2012. Physiology of abiotic stress in plants. Agrobios, Jodhpur, India.
  • Fischer, G. 1995. Effect of root zone temperature and tropical altitude on the growth, development and fruit quality of cape gooseberry (Physalis peruviana L.). PhD thesis. Humboldt-Universität zu Berlín, Germany.
  • Fischer, G. 2000a. Crecimiento y desarrollo. pp. 9-26. In: Flórez, V.J., G. Fischer, and A.D. Sora (eds.). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Unibiblos, Universidad Nacional de Colombia, Bogota.
  • Fischer, G. 2000b. Ecophysiological aspects of fruit growing in tropical highlands. Acta Hortic. 531, 91-98. Doi: https://doi.org/10.17660/ActaHortic.2000.531.13
  • Fischer, G. 2005. El problema del rajado del fruto de uchuva y su posible control. pp. 55-82. In: Fischer, G., D. Miranda, W. Piedrahita, and J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Unibiblos, Universidad Nacional de Colombia, Bogota.
  • Fischer, G. 2019. La ecofisiología como una herramienta para el manejo de los cultivos. In: Conferencia en Seminario de Actualización Académica en Ciencias Agrícolas y Veterinarias, 2-3 de octubre de 2019, Universidad Pedagógica y Tecnológica de Colombia, Tunja.
  • Fischer, G., P.J. Almanza-Merchán, and D. Miranda. 2014. Importancia y cultivo de la uchuva (Physalis peruviana L.). Rev. Bras. Frutic. 36(1), 1-15. Doi: https://doi.org/10.1590/0100-2945-441/13
  • Fischer, G., G. Ebert, and P. Lüdders. 2000a. Root-zone temperature effects on dry matter distribution and leaf gas exchange of cape gooseberry (Physalis peruviana L.). Acta Hortic. 531, 169-173. Doi: https://doi.org/10.17660/ActaHortic.2000.531.24
  • Fischer, G., G. Ebert, and P. Lüdders. 2000b. Provitamin A, carotenoids, organic acids and ascorbic acid content of cape gooseberry (Physalis peruviana L.) ecotypes grown at two tropical altitudes. Acta Hortic. 531, 263-267. Doi: https://doi.org/10.17660/ActaHortic.2000.531.43
  • Fischer, G., G. Ebert, and P. Lüdders. 2007. Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. J. Appl. Bot. Food Qual. 81(1), 29-35.
  • Fischer, G., A. Herrera, and P.J. Almanza. 2011. Cape gooseberry (Physalis peruviana L.). pp. 374-396. In: Yahia, E.M. (ed.) Postharvest biology and technology of tropical and subtropical fruits. Vol. 2: Acai to citrus. Woodhead Publishing, Cambridge, UK. Doi: https://doi.org/10.1533/9780857092762.374
  • Fischer, G. and O. Martínez. 1999. Calidad y madurez de la uchuva (Physalis peruviana L.) en relación con la coloración del fruto. Agron. Colomb. 16(1-3), 35-39.
  • Fischer, G., L.M. Melgarejo, and J. Cutler. 2018. Pre-harvest factors that influence the quality of passion fruit: A review. Agron. Colomb. 36(3), 217-226. Doi: https://doi.org/10.15446/agron.colomb.v36n3.71751
  • Fischer, G. and L.M. Melgarejo. 2014. Ecofisiología de la uchuva (Physalis peruviana L.). pp. 31-47. In: Carvalho, C.P. and D.A. Moreno (eds.). Physalis peruviana: fruta andina para el mundo. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo – CYTED, Limencop SL, Alicante, Spain.
  • Fischer, G. and D. Miranda. 2012. Uchuva (Physalis peruviana L.). pp. 851-873. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  • Fischer, G. and J.O. Orduz-Rodríguez. 2012. Ecofisiología en los frutales. pp. 54-72. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  • Fischer, G., F. Ramírez, and F. Casierra-Posada. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agron. Colomb. 34(2), 190-199. Doi: https://doi.org/10.15446/agron.colomb.v34n2.56799
  • Fischer, G., C. Ulrichs, and G. Ebert. 2015. Contents of non-structural carbohydrates in the fruiting cape gooseberry (Physalis peruviana L.) plant. Agron. Colomb. 33(2), 155-163. Doi: https://doi.org/10.15446/agron.colomb.v33n2.51546
  • Friedrich, G. and M. Fischer. 2000. Physiologische Grundlagen des Obstbaues. Verlag Eugen Ulmer, Stuttgart, Germany.
  • Gariglio, N.F., R.A. Pilatti, and M. Agustí. 2007. Requerimientos ecofisiológicos de los árboles frutales. pp. 41-82. In: Sozzi, G.O. (ed.). Árboles frutales: ecofisiología, cultivo y aprovechamiento. Editorial Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires.
  • Garzón-Acosta, C.P., D.M. Villarreal-Garzón, G. Fischer, A.O. Herrera, and D. Sanjuanelo. 2014. La deficiencia de fósforo, calcio y magnesio afecta la calidad poscosecha del fruto de uchuva (Physalis peruviana L.). Acta Hortic. 1016, 83-88. Doi: https://doi.org/10.17660/ActaHortic.2014.1016.9
  • Gordillo, O., G. Fischer, and R. Guerrero. 2004. Efecto del riego y de la fertilización sobre la incidencia del rajado en frutos de uchuva (Physalis peruviana L.) en la zona de Silvania (Cundinamarca). Agron. Colomb. 22(1), 53-62.
  • Heinze, W. and M. Midash. 1991. Photoperiodische Reaktion von Physalis peruviana L. Gartenbauwiss. 56(6), 262-264.
  • Kulandaivelu, G., S. Maragatham, and N. Nedunchezhian. 1989. On the possible control of ultraviolet-B induced response in growth and photo-synthetic activities in higher plants. Physiol. Plant. 76, 398-404. Doi: https://doi.org/10.1111/j.1399-3054.1989.tb06210.x
  • Lambers, H., F.S. Chapin III, F. Stuart, and T.L. Pons. 2008. Plant physiological ecology. Springer, New York, NY. Doi: https://doi.org/10.1007/978-0-387-78341-3
  • Marengo, J.A., J.D. Pabón, A. Díaz, G. Rosas, G. Ávalos, E. Montealegre, M. Villacis, S. Solman, and M. Rojas. 2011. Climate change: evidence and future scenarios for the Andean region. pp. 110-127. In: Herzog, S., R. Martinez, P.M. Jorgensen, and H. Tiessen (eds.). Climate change and biodiversity in the tropical Andes. IAI-SCOPE-UNESCO, Paris.
  • Mayorga, M., G. Fischer, L.M. Melgarejo, and A. Parra-Coronado. 2020. Growth, development and quality of Passiflora tripartita var. mollissima fruits under two environmental tropical conditions. J. Appl. Bot. Food Qual. 93(1).
  • Mazorra, M.F., A.P. Quintana, D. Miranda, G. Fischer, and B. Cháves. 2003. Análisis sobre el desarrollo y la madurez fisiológica del fruto de la uchuva (Physalis peruviana L.) en la zona de Sumapaz (Cundinamarca). Agron. Colomb. 21(3), 175-189.
  • Menezes-Silva, P.E., L. Loram‐Lourenço, R.D. Alves, L. Sousa, S.E. Almeida, and F. Farnese. 2019. Different ways to die in a changing world: consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol. Evol. 9(20), 11979-11999. Doi: https://doi.org/10.1002/ece3.5663
  • Miranda, D., G. Fischer, I. Mewis, S. Rohn, and C. Ulrichs. 2014. Salinity effects on proline accumulation and total antioxidant activity in leaves of the cape gooseberry (Physalis peruviana L.). J. Appl. Bot. Food Qual. 87, 67-73.
  • Miranda, D., G. Fischer, and C. Ulrichs. 2010. Growth of cape gooseberry (Physalis peruviana L.) plants affected by salinity. J. Appl. Bot. Food Qual. 83(2), 175-181.
  • Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15-19. Doi: https://doi.org/10.1016/j.tplants.2005.11.002
  • Mora, R., A. Peña, E. López, J.J. Ayala, and D. Ponce. 2006. Agrofenología de Physalis peruviana L. en invernadero y fertirriego. Rev. Chapingo Ser. Hortic. 12(1), 57-63. Doi: https://doi.org/10.5154/r.rchsh.2005.10.011
  • Moreno, D. 2013. Caracterización de parámetros fisiológicos y bioquímicos en tres accesiones de uchuva (Physalis peruviana L.) sometidas a estrés hídrico controlado. Undergraduate thesis. Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogota.
  • National Research Council. 1989. Lost crops of the Incas. National Academy Press, Washington, D.C. pp. 241-251.
  • Ngasoh, F.G., E.A. Jandong, P.A. Dauda, and R. Ismaila. 2019. The influence of climate variation on abiotic plant stress: a review. Int. J. Environ. Agric. Biotech. 4(4), 1153-1160. Doi: https://doi.org/10.22161/ijeab.4440
  • Nimbolkar, P.K., J. Bajeli, A. Tripathi, A.K. Chaubey, and N.M. Kanade. 2020. Mechanism of salt tolerance in fruit crops: a review. Agric. Rev. 41(1), 25-33. Doi: https://doi.org/10.18805/ag.R-1919
  • Nocetti, D., H. Núñez, L. Puente, A. Espinosae, and F. Romeroa. 2020. Composition and biological effects of goldenberry byproducts: an overview. J. Sci. Food Agric. 2020. Doi: https://doi.org/10.1002/jsfa.10386
  • Nunes, A.L., S. Sossmeier, A.P. Got, and N.B. Bispo. 2018. Germination eco-physiology and emergence of Physalis peruviana seedlings. J. Agric. Sci. Technol. B 8, 352-359. Doi: https://doi.org/10.17265/2161-6264/2018.06.002
  • Opara, L.U., C.J. Studam, and N.H. Banks. 1997. Fruit skin splitting and cracking. Hortic. Rev. 19, 217-262. Doi: https://doi.org/10.1002/9780470650622.ch4
  • Pacheco, R.A. and H.F. Sáenz. 1991. Influencia de la temperatura e intensidad lumínica en condiciones controladas sobre el crecimiento foliar y radical en dos ecotipos de Uchuva Physalis peruviana L. en Tunja. Undergraduate thesis. Facultad de Agronomía, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
  • Parra, A., G. Fischer, and B. Chaves. 2015. Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biol. Colomb. 20(1), 167-177.
  • Peet, M.M. 2009. Physiological disorders in tomato fruit development. Acta Hortic. 821, 151-160. Doi: https://doi.org/10.17660/ActaHortic.2009.821.16
  • PNUMA. 2019. Informe sobre la disparidad en las emisiones de 2019. Programa de las Naciones Unidas para el Medio Ambiente, Nairobi.
  • Puente, L., D. Nocetti, and A. Espinosa. 2019. Physalis peruviana Linnaeus, an update on its functional properties and beneficial effects in human health. In: Mariod, A. (ed.) Wild fruits: Composition, nutritional value and products. Springer Nature, Switzerland. Doi: https://doi.org/10.1007/978-3-030-31885-7_34
  • Ramadan, M.F. and J.-T. Mörsel. 2019. Goldenberry (Physalis peruviana) oil. pp. 397-404. In: Fruit oils: chemistry and functionality, Springer Nature Switzerland AG, Switzerland. Doi: https://doi.org/10.1007/978-3-030-12473-1_19
  • Ramírez, F., G. Fischer, T.L. Davenport, J.C.A. Pinzón, and C. Ulrichs. 2013. Cape gooseberry (Physalis peruviana L.) phenology according to the BBCH phenological scale. Sci. Hortic. 162, 39-42. Doi: https://doi.org/10.1016/j.scienta.2013.07.033
  • Restrepo-Díaz, H., J.C. Melgar, and L. Lombardini. 2010. Ecophysiology of horticultural crops: an overview. Agron. Colomb. 28(1), 71-79.
  • Rodríguez, N.C. and M.L. Bueno. 2006. Estudio de la diversidad citogenética de Physalis peruviana L. (Solanaceae). Acta Biol. Colomb. 11(2), 75-85.
  • Salazar, M.R., B. Chaves-Córdoba, J.W. Jones, and A. Cooman. 2006. A simple phenological and potential production model for cape gooseberry (Physalis peruviana L.). Acta Hortic. 718, 105-112. Doi: https://doi.org/10.17660/ActaHortic.2006.718.11
  • Salazar, M.R., J.W. Jones, B. Chaves, A. Cooman, and G. Fischer. 2008. Base temperature and simulation model for nodes appearance in cape gooseberry (Physalis peruviana L.). Rev. Bras. Frutic. 30(4), 862-867. Doi: https://doi.org/10.1590/S0100-29452008000400004
  • Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortic. 13(3). Doi: https://doi.org/10.17584/rcch. 2019v13i3.100171
  • Shukla, P.R., J. Skea, R. Slade, R. van Diemen, E. Haughey, J. Malley, M. Pathak, and J. Portugal Pereira (eds.). 2019. Technical summary, 2019. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC; https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/03_Technical-Summary-TS.pdf; consulted: March, 2020.
  • Taiz, L. and E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associates, Sunderland, MA.
  • Torres, C., A. Cooman, and G. Fischer. 2004. Determinación de las causas del rajado del fruto de uchuva (Physalis peruviana L.) bajo cubierta: I. Efecto de la variación en el balance hídrico. Agron. Colomb. 22(2), 140-146.
  • Torres, C., G. Fischer, and D. Miranda. 2016. Principales fisiopatías del cultivo de uchuva (Physalis peruviana L.). pp. 139-146. In: Miranda, D., C. Carranza, and G. Fischer (eds.). Problemas de campo asociados al cultivo de uchuva (Physalis peruviana L.). Editorial Universidad Nacional de Colombia, Bogota.
  • Trevisani, N., R.C. De Melo, M.P. Colli, J.L.M. Coimbra, and A.F. Guidolin. 2017. Associations between traits in fisális: a tool for indirect selection of superior plants. Rev. Bras. Frutic. 39(4), e-106. Doi: https://doi.org/10.1590/0100-29452017106
  • Villareal, A.P. 2013. Evaluación fisiológica de plantas de uchuva (Physalis peruviana L.), en la respuesta al estrés por anegamiento e infección de Fusarium oxysporum. MSc thesis. Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogota.
  • Villareal-Navarrete, A., G. Fischer, L.M. Melgarejo, G. Correa, and L. Hoyos-Carvajal. 2017. Growth response of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum infection. Acta Hortic. 1178, 161-168. Doi: https://doi.org/10.17660/ActaHortic.2017.1178.28
  • Wolff, X.Y. 1991. Species, cultivar, and soil amendments influence fruit production of two Physalis species. HortScience 26(12), 1558-1559.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 

Similar Articles

You may also start an advanced similarity search for this article.