Skip to main navigation menu Skip to main content Skip to site footer

Respuesta de las plantas a estrés por inundación. Una revisión

Abstract

La inundación tiene un efecto negativo sobre la mayoría de plantas terrestres debido a que reduce su crecimiento e induce la senescencia. La deficiencia de oxígeno, efecto principal de la inundación, cambia el metabolismo de la planta induciendo la vía anaeróbica o fermentativa como mecanismo alterno, aunque poco eficiente para la producción de energía. Igualmente el déficit de oxígeno aumenta la producción de especies reactivas de oxígeno (ROS), tanto en la mitocondria como en el cloroplasto. Como respuesta al incremento de ROS hay un aumento en el sistema de defensa antioxidante de la planta, el cual es considerado, junto con la inducción de la vía fermentativa, como una respuesta a corto plazo. Cuando la planta está sometida a largos periodos de inundación se presentan, adicionalmente, cambios morfológicos, como la formación de aerénquima, los cuales son considerados respuestas a largo plazo. En este artículo se revisan las respuestas, tanto a corto como a largo plazo, de las plantas a la condición de estrés hídrico por inundación.

Keywords

respiración anaeróbica, defensa antioxidante, aerénquima, estrés abiótico

PDF (Español)

References

  • Abbaspour, A. 2012. Fractionation of copper in soils as influenced by waterlogging and application of crop residues. Iranian J. Soil Res. (Soil and Water Sci.) 25(4), 295-306.
  • Aguilara, E.A., D.W. Turnera y K. Sivasithamparam. 1999. Aerenchyma formation in roots of four banana (Musa spp.) cultivars. Sci. Hortic. 80, 57-72.
  • Ahmed, S., E. Nawat y T. Sakuratani. 2006. Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) during waterlogging. Environ. Exp. Bot. 57, 278-284.
  • Alscher, R.G., J.L. Donahue y C.L. Cramer. 1997. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol. Plant. 100, 224-233.
  • Apel, K. y H. Hirt. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-99.
  • Aschi-Smiti, S., W. Chaièbi, R. Brouquisse, B. Ricard y P. Saglio. 2003. Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum 'Park'. Ann. Bot. 91, 195-204.
  • Bai, T., C. Li, F. Ma, F. Feng y H. Shu. 2010. Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant Soil 327, 95-105.
  • Balakhnina, T.I., P. Bennicelli, Z. Stepniewska, W. Stepniewski e I.R. Fomina. 2010. Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage. Plant Soil 327, 293-301.
  • Bange, M.P., S.P. Milroy y P. Thongbai. 2003. Growth and yield of cotton in response to waterlogging. Field Crops Res. 88, 129-142.
  • Bin, T., X. Shang-Zhong, Z. Xi-Ling, Z. Yong-Lian y Q. Fa-Zhan. 2010. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging- tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agr. Sci. China 9(5), 651-661.
  • Blom, C.W.P.M. 1999. Adaptations to flooding stress: From plant community to molecule. Plant Biol. 1, 261-273.
  • Cao, F.L. y W.H. Conner. 1999. Selection of flood-tolerant Populus deltoides clones for reforestation projects in China. For. Ecol. Manage. 117, 211-220
  • Cheeseman, J.M. 2007. Hydrogen peroxide and plant stress: A challenger relationship. Plant Stress 1(1), 4-15.
  • Chen, H., R. G. Qualls y G.C. Miller. 2002. Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ. Exp. Bot. 48, 119-128.
  • Colmer, T.D. 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26, 17-36.
  • Colmer, T.D., M.C.H. Cox y L.A.C.J. Voesenek. 2006. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170, 767-778.
  • Couldwell, D.L., R. Dunford, N.J. Kruger, D.C. Lloyd, R.G. Ratcliffe y A.M.O. Smitdh. 2009. Response of cytoplasmic pH to anoxia in plant tissues with altered activities of fermentation enzymes: application of methyl phosphonate as an NMR pH probe. Ann. Bot. 103, 249-258.
  • Curran, M. 1985. Gas movements in the roots of Avicennia marina (Forsk.) Vierh. Aust. J. Plant Physiol. 12, 97-108.
  • Dickin, E. y D. Wright. 2007. The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). Eur. J. Agron. 28, 234-244.
  • Ella, E.S., N. Kawano y O. Ito. 2003. Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence. Plant Sci. 165, 85-93.
  • Evans, D.E. 2003. Aerenchyma formation. New Phytol. 161, 35-49.
  • Ferreira, C.S., M.T.F. Piedade, A.C. Franco, J.F. Carvalho Goncalves y W.J. Junk. 2009. Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of Himatanthus sucuuba, a Central Amazon tree. Aquatic Bot. 90, 246-252.
  • Fukao, T., R.A. Kennedy, Y. Yamasue y M.E. Rumpho. 2003. Genetic and biochemical analysis of anaerobically induced enzymes during seed germination of Echinochloa crusgalli varieties tolerant and intolerant of anoxia. J. Exp. Bot. 54, 1421-1429.
  • Fukao, T. y J. Bailey-Serres. 2004. Plant responses to hypoxia - is survival a balancing act?. Trends Plant Sci. 9(9), 490-494.
  • García, F.J. 2007. Biología y botánica, Tema 6b: Modificaciones y adaptaciones de la raíz. Unidad docente de botánica. ETSMRE, Universidad Politécnica de Valencia, Valencia, España.
  • García, P.N. y F. Aldana. 2011. Efecto del estrés por anegamiento sobre el crecimiento, desarrollo y fisiología de uchuva (Physalis peruviana L.) bajo condiciones de invernadero. Trabajo de grado. Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá.
  • Garthwaite, A.J., W. Armstrong y T.D. Colmer. 2008. Assessment of O2 diffusivity across the barrier to radial O2 loss in adventitious roots of Hordeum marinum. New Phytol. 179, 405-416.
  • Grassini, P., G.V. Indaco, M. López, A.J. Hall y N. Trápani. 2006. Responses to short-term waterlogging during grain filling in sunflower. Field Crops Res. 101, 352-363.
  • Guglielminetti, L., H.A. Busilacchi, P. Perata y A. Alpi. 2001. Carbohydrate-ethanol transition in cereal grains under anoxia. New Phytol. 151, 607-612.
  • Gutierrez, B.F.H., R.S. Lavado y C.A. Porcelli. 1996. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res. 47, 175-179.
  • Hossain, Z., M.F. López-Climent, V. Arbona, R.M. Pérez- Clemente y A. Gómez-Cadenas. 2009. Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. J. Plant Physiol. 166, 1391-1404.
  • Huber, H., E. Jacobs y E.J.W. Visser. 2009. Variation in flooding-induced morphological traits in natural populations of white clover (Trifolium repens) and their effects on plant performance during soil flooding. Ann. Bot. 103, 377-386.
  • IPCC. 2007. Climate change 2007: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK.
  • Issarakraisila, M., Q. Ma y D.W. Turner. 2006. Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Sci. Hortic. 111, 107-113.
  • Kato-Noguchi, H. 2000. Evaluation of the importance of lactate for the activation of ethanolic fermentation in lettuce roots in anoxia. Physiol. Plant. 109, 28-33.
  • Kolb, R.M. y C.A. Joly. 2009. Flooding tolerance of Tabebuia cassinoides: Metabolic, morphological and growth responses. Flora 204, 528-535.
  • Koppitz, H. 2004. Effects of flooding on the amino acid and carbohydrate patterns of Phragmites australis. Limnologica 34, 37-47.
  • Kulichikhin, K.Y., T.V. Chirkova y K. Fagerstedt. 2008. Intracellular pH in rice and wheat root tips under hypoxic and anoxic conditions. Plant Signal. Behav. 3, 240-242.
  • Leul, M. y W. Zhou. 1998. Alleviation of waterlogging damage in winter rape by application of uniconazole: Effects on morphological characteristics, hormones and photosynthesis. Field Crops Res. 59, 121-127.
  • Li, S., S.R. Pezeshki y F.D. Shields. 2006. Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings. J. Plant Physiol. 163, 619-628. [
  • Lin, K.H., P.Y. Chao, S.Y. Yang, W.C. Chen, H.F. Lo y T.R Chang. 2006. The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Bot. Studies 47, 417-426.
  • Lin, K.H., Y.K. Chiou, S.Y. Hwang, L.F.O. Chen y H.F. Lo. 2008. Calcium chloride enhances the antioxidative system of sweet potato (Ipomoea batatas) under flooding stress. Ann. Appl. Biol. 152, 157-168.
  • Malik, A.I., T.D. Colmer, H. Lambers y M. Schortemeyer. 2003. Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell Environ. 26, 1713-1722.
  • Mano, Y., F. Omori, T. Takamizo, B. Kindiger, R. McBird y C.H. Loaisiga. 2006. Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil 281, 269-279.
  • Medina, E. 1999. Mangrove physiology: the challenge of salt, heat, and light stress under recurrent flooding, pp. 109-126. En: Yáñez-Arancibia, A. y A.L. Lara- Domínguez (eds.). Ecosistemas de Manglar en América Tropical. Instituto de Ecología, México; UICN/ORMA, Costa Rica; NOAA/NMFS, Silver Spring, MD.
  • McDonald, M.P., N.W. Galwey y T.D. Colmer. 2002. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ. 25, 441-451.
  • Milroy, S.P., M.P. Bange y P. Thongbai. 2009. Cotton leaf nutrient concentrations in response to waterlogging under field conditions. Field Crops Res. 113, 246-255.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9), 405-410.
  • Mohanty, B. y B. Ong. 2001. Contrasting effects of submergence in light and dark on pyruvate decarboxylase activity in roots of rice lines differing in submergence tolerance. Ann. Bot. 91, 291-300.
  • Mubarakshina, M., S. Khorobrykh y B. Ivanov. 2006. Oxygen reduction in chloroplast thylakoids results in production of hydrogen peroxide inside the membrane. Biochim. Biophys. Acta 1757, 1496-1503.
  • Palta, J.A., A. Ganjeali, N.C. Turner, K.H.M. Siddique. 2010. Effects of transient subsurface waterlogging on root growth, plant biomass and yield of chickpea. Agr. Water Manage. 97, 1469-1476.
  • Parolin, P. 2009. Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann. Bot. 103, 359-376.
  • Parolin, P. y F. Wittman. 2010. Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems. En: http://www.ncbi.nlm.nih.gov/ pmc/articles/PMC29650 40/pdf/plq003.pdf; consulta: mayo de 2011.
  • Peña-Fronteras, J.T., M.C. Villalobos, A.M. Baltazar, F.E. Merca, A.M. Ismail y D.E. Johnson. 2008. Adaptation to flooding in upland and lowland ecotypes of Cyperus rotundus, a troublesome sedge weed of rice: tuber morphology and carbohydrate metabolism. Ann. Bot. 103, 295-302.
  • Polthanee, A., T. Changdee, J. Abe y S. Morita. 2008. Effects of flooding on growth, yield and aerenchyma development in adventitious roots in four cultivars of Kenaf (Hibiscus cannabinus L.). Asian J. Plant Sci. 7(6), 544-550.
  • Ryser, P., K.G. Harneet y J.B. Collin. 2011. Constraints of root response to waterlogging in Alisma triviale. Plant Soil 343, 247-260.
  • Sairam, R.K., K. Dharmar, V. Chinnusamy y R.C. Meena. 2008. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). J. Plant Physiol. 166, 602-616.
  • Saqib, M., J. Akhtar y R.H. Qureshi. 2005. Na+ exclusion and salt resistance of wheat (Triticum aestivum) in saline-waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Sci. 169, 125-130.
  • Stryer, L. 1995. Bioquímica. 4ª ed. Editorial Reverté S.A., Barcelona, España.
  • Suralta, R. y A. Yamauchi A. 2008. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ. Exp. Bot. 64, 75-82.
  • Suzuki, N. y R. Mittler. 2006. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 126, 45-51.
  • Taiz, L. y E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associates, Sunderland, MA.
  • Unger, I.M., P.P. Motavalli y R.-M. Muzika. 2009a. Changes in soil chemical properties with flooding: A field laboratory approach. Agr. Ecosyst. Environ. 131, 105-110.
  • Unger, I.M., A.C. Kennedy y R.M. Muzika. 2009b. Flooding effects on soil microbial communities. Appl. Soil Ecol. 42, 1-8.
  • Visser, E.J.W., T.D. Colmer, C.W.P.M. Blom y L.A.C.J.Voesenek. 2000. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ. 23, 1237-1245.
  • Wood, S., K. Sebastian y S. Scherr. 2000. Soil resource condition. pp. 45-54. En: Pilot analysis of global ecosystems: Agroecosystems. International Food Policy Research Institute and the World Resources Institute, Washington, D.C.
  • Xiao-Chang, W. y L. Qin. 2006. Effect of waterlogged and aerobic incubation on enzyme activities in paddy soil. Pedosphere 16(4), 532-539.
  • Xiao, Y., Z. Jie, M. Wanga, G. Lin y W. Wang. 2009. Leaf and stem anatomical responses to periodical waterlogging in simulated tidal floods in mangrove Avicennia marina seedlings. Aquatic Bot. 91, 231-237.
  • Yin, D., S. Chen, F. Chen, Z. Guan y W. Fang. 2009. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ. Exp. Bot. 67, 87-93.
  • Yin, D., S. Chen, F. Chen, Z. Guan y W. Fang. 2010. Morpho- anatomical and physiological responses of two Dendranthema species to waterlogging. Environ. Exp. Bot. 68, 122-130.
  • Yordanova, R., K.N. Christov, L.P. Popova. 2004. Antioxidative enzymes in barley plants subjected to soil flooding. Environ. Exp. Bot. 51, 93-101.
  • Yong, C., G. Min, C. Ye, Z. Chong-Shun, Z. Xue-Kun y W. Han-Zhong. 2010. Combining ability and genetic effects of germination traits of Brassica napus l. under waterlogging stress condition. Agr. Sci. China 9(7), 951-957.
  • Yong-Zhong L., T. Bin, Z. Yong-Lian, M. Ke-Jun, X. Shang- Zhong y Q. Fa-Zhan. 2010. Screening methods for waterlogging tolerance at maize (Zea mays L.) seedling stage. Agr. Sci. China 9(3), 362-369.
  • Zaidi, P.H., S. Rafique y N.N. Singh. 2002. Response of maize (Zea mays L.) genotypes to excess soil moisture stress: morpho-physiological effects and basis of tolerance. Eur. J. Agron. 19, 383-399.
  • Zheng, C., D. Jiang, F. Liu, T. Dai, Q. Jing y W. Cao. 2009. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci. 176, 575-582.
  • Zhou, E. y X. Lin. 1995. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res. 44, 103-1l0

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >>