Physiological and morphological characterization of avocado creole (Persea americana Mill.) accessions for elite rootstocks
Abstract
The selection of a suitable cultivar as a seed source for rootstock production can be considered of great importance since the success or failure after the plantation establishment depends on the attributes of the material used as a pattern in the production of seedlings. This research aimed to characterize morphologically and physiologically different creole cultivars of avocado to identify elite materials that can be used as rootstocks. The research was carried out in Supia, Caldas - Colombia (5°26'39'' N; 75°38'56'' W). A completely randomized experimental design was used with 17 treatments (accessions) and 20 replications. The variables evaluated were rootstock stem diameter, rootstock height, leaves number, leaf area index (LAI), specific leaf area (SLA), dry matter, net photosynthesis (A), stomatal conductance (gs), transpiration (E), and water use efficiency (WUE). The largest records were for rootstock stem diameter ID08, ID-06 (˃ 9 mm), rootstock height ID01, ID-15 (˃ 60 cm), leaf area ID08 and ID15 (> 2000 cm2), LAI ID14 (1.99), SLA ID06 and ID17 (164.23 and 167.57), total dry matter ID01, ID08, ID15 (43.50, 42.91 and 42.80), A: ID01 and ID02 (˃6 μmol CO2 m-2 s-1), gs: ID-16 (0.15 mol H2O m-2 s-1), E: ID-16 (5.93 mmol H2O m-2 s-1) and WUE: ID02 (1.70 μmol CO2/mmol H2O) accessions. The origin of the avocado cultivars significantly influenced physiological and morphological behavior, thus enabling the detection of early attributes for selecting materials that can be used as rootstocks.
Keywords
Growth and development, Selection, Plant breeding, Rootstock accessions, Tropical fruits
References
- Alberti, M.F., B.D.A. Brogio, S.R.D. Silva, T. Cantuarias-Avilés, and C. Fassio. 2017. Avances en la propagación del aguacate. Rev. Bras. Frut. 40(6), e-782. Doi: https://doi.org/10.1590/0100-29452018782
- Baret, F., B. de Solan, R. Lopez‐Lozano, K. Ma, and M. Weiss. 2010. GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5° Zenith angle: theoretical considerations based on 3D architecture models and application to wheat crops. Agric. For. Meteorol. 150(11), 393-1401. Doi: https://doi.org/10.1016/j.agrformet.2010.04.011
- Barrientos-Priego, A.F. 2017. Presente y futuro de los portainjertos y variedades de aguacate en el mundo y México. pp. 2-15. In: Memorias del V Congreso Latinoamericano del Aguacate. Asociación de Productores y Exportadores de Jalisco (APEAJAL). Ciudad Guzmán, Mexico.
- Barrientos-Priego, A.F., R.B. Muñoz-Pérez, J.C. Reyes-Alemán, M.W. Borys, and M.T. Martínez-Damian. 2007. Taxonomía, cultivares y portainjertos. pp. 31-62. In Téliz, D. and A. Mora (eds.). El aguacate y su manejo integrado. Ediciones Mindiprensa, Mexico, DF.
- Bernal, E., J. Alonso, and D.C. Díaz. 2014. Manejo del cultivo. pp. 10-151. In: Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate. 2nd ed. Corporación Colombiana de Investigación Agropecuaria (Corpoica); Secretaria de Agricultura y Desarrollo Rural de Antioquia, Medellin, Colombia.
- Betancourt, P. and F. Pierre. 2013. Extracción de macronutrientes por el cultivo de tomate (Solanum lycopersicum Mill. Var. Alba) en casas de cultivo en Quíbor, Estado Lara. Bioagro 25(3), 181-188.
- Cañas-Gutiérrez, G.P., L.F. Galindo-López, R. Arango-Isaza, and C.I. Saldamando-Benjumea. 2015. Diversidad genetica de cultivares de aguacate (Persea americana) en Antioquia, Colombia. Agron. Mesoam. 26(1), 129-143. Doi: https://doi.org/10.15517/am.v26i1.16936
- Cañas-Gutiérrez, G.P., S. Sepulveda-Ortega, F. López-Hernández, A.A. Navas-Arboleda, and A.J. Cortés. 2022. Inheritance of yield components and morphological traits in avocado cv. Hass from “Criollo Elite Trees” via half-sib seedling rootstocks. Front. Plant Sci. 13, 843099. Doi: http://doi.org/10.3389/fpls.2022.843099
- Castro, M., C. Fassio, and N. Darrouy. 2008. Portainjertos de palto en Chile. Hortic. Int. 62, 42-46.
- de Mendiburu, F. 2021. Agricolae: Statistical Procedures for Agricultural Research. R package (1.3-5). R Fundation, Ginebra.
- Fang, H., F. Baret, S. Plummer, and G. Schaepman‐Strub. 2019. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophy. 57(3), 739-799. Doi: https://doi.org/10.1029/2018RG000608
- FAO. 2022. Faostat Online Database. In: http://www.faostat.fao.org/; consulted: January, 2023.
- Fick, A., V. Swart, R. Backer, A. Bombarely, J. Engelbrecht, and N. van den Berg. 2022. Partially resistant avocado rootstock Dusa® shows prolonged upregulation of nucleotide binding-leucine rich repeat genes in response to Phytophthora cinnamomi infection. Front. Plant Sci. 13, 793644. Doi: https://doi.org/10.3389/fpls.2022.793644
- Franco, T.L. and R. Hidalgo. 2003. Análisis estadístico de datos de caracterización. morfológica de recursos fitogenéticos. Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali, Colombia.
- Gonçalves, J.F.C., E.G.D.F. Melo, M.J. Ferreira, C.E.M.D. Silva, and I.B. Gomes. 2013. Crescimento, partição de biomassa e fotossíntese em plantas jovens de Genipa spruceana submetidas ao alagamento. Cerne 19(2), 193-200. Doi: https://doi.org/10.1590/S0104-77602013000200003
- Halbritter, A.H., S. Fior, I. Keller, R. Billeter, P.J. Edwards, R. Holderegger, S. Karrenberg, A.R. Pluess, A. Widmer, and J.M. Alexander. 2018. Trait differentiation and adaptation of plants along elevation gradients. J. Evol. Biol. 31(6), 784-800. Doi: https://doi.org/10.1111/jeb.13262
- Heath, R.L. and M.L. Arpaia. 2005. Avocado tree physiology–understanding the basis of productivity. pp. 87-119. In: Proc. California Avocado Research Symposium. University of California, Riverside, CA.
- Hernández-Villarreal, A.E. 2013. Caracterización morfológica de recursos fitogenéticos. Rev. Bio Cienc. 2(3). 113-118. Doi: https://doi.org/10.15741/revbio.02.03.05
- Hernández, M.I., J.M. Salgado, M. Chailloux, V. Moreno, and M. Mojena. 2009. Relaciones nitrógeno-potasio en fertirriego para el cultivo protegido del tomate (Solanum lycopersicum L.) y su efecto en la acumulación de biomasa y extracción de nutrientes. Cult. Trop. 30(4), 71-78.
- Hunt, R. 2003. Growth and development: Growth analysis, individual plants. pp. 579-588. In: Thomas, B. (ed.). Encyclopedia of applied plant sciences. Elsevier, Shelffield. Doi: https://doi.org/10.1016/B0-12-227050-9/00028-4
- Hurtado-Fernández, E., A. Fernández-Gutiérrez, and A. Carrasco-Pancorbo. 2018. Avocado Fruit—Persea americana. pp. 37-48. In: Rodrigues, S., E.O. Silva, and E.S. de Brito (eds.). Exotic fruits. Doi: https://doi.org/10.1016/B978-0-12-803138-4.00001-0
- Lazare, S., Y. Cohen, E., Goldshtein, U. Yermiyahu, A. Ben-Gal, and A. Dag, 2021. Rootstock-dependent response of Hass avocado to salt stress. Plants 10(8), 1672. Doi: https://doi.org/10.3390/plants10081672
- López-Galé, Y., N. Murcia-Riaño, Y. Romero-Barrera, and M.F. Martínez. 2022. Morphological characterization of seed-donor Creole avocado trees from three areas in Colombia. Rev. Chapingo Ser. Hortic. 28(2), 93-108. Doi: https://doi.org/10.5154/r.rchsh.2021.06.010
- Mandemaker, A.J. 2007. Review: Photosynthesis of avocado. Annual Research Report 7. New Zealand Avocado Growers' Association.
- Mejía-Jaramillo, L., C.F. Barrera-Sánchez, and O.J. Córdoba-Gaona. 2022. Effect of the seed weight on the growth of young avocado rootstock seedlings. Bioagro 34(2), 183-194. Doi: https://doi.org/10.51372/bioagro342.8
- Montes-Hernández, S., J.D. Torre-Vizcaino, E. Heredia-García, M. Hernández-Martínez, and M.G. Camarena-Hernández 2017. Caracterización morfológica de germoplasma de aguacate mexicano (Persea americana var. drymifolia, Lauraceae). Interciencia 42(3), 175-180.
- Paine, C.E.T., T.R. Marthews, D.R. Vogt, D. Purves, M. Rees, A. Hector, and L.A. Turnbull. 2012. Cómo ajustar modelos de crecimiento de plantas no lineales y calcular tasas de crecimiento: una actualización para ecologistas. Métod. Ecol. Evol. 3, 245-256. Doi: https://doi.org/10.1111/j.2041-210X.2011.00155.x
- Peil, R.M. and J.J. Gálvez. 2005. Reparto de materia seca como factor determinante de la producción de las hortalizas de fruto cultivadas en invernadero. R. Bras. Agrociênc. 11(1), 5-11.
- Peng, Y., Y. Dong, B. Tu, Z. Zhou, B. Zheng, L. Luo, C. Shi, and K. Du. 2013. Roots play a vital role in flood-tolerance of poplar demonstrated by reciprocal grafting. F Flora-Morphol. Distrib. Fun. Ecol. Plants 208, 479-487. Doi: https://doi.org/10.1016/j.flora.2013.08.001
- Petry, H.B., B.D.P. Ferreira, O.C. Koller, V.S.D. Silva, and S.F. Schwarz. 2012. Propagação de abacateiro via estacas estioladas. Bragantia 71(1), 15-20. Doi: https://doi.org/10.1590/S0006-8705201200010000371, 15-20.
- Ramírez-Gil, J.G. 2018. Enfermedad compleja del marchitamiento del aguacate, implicaciones y manejo en Colombia. Rev. Fac. Nal Agron. Medellin 71(2), 8525-8541. Doi: https://doi.org/10.15446/rfna.v71n2.66465
- Reyes-Herrera, P.H., L. Muñoz-Baena, V. Velásquez-Zapata, L. Patiño, O.A. Delgado-Paz, C.A. Díaz-Diez, A.A. Navas-Arboleda, and A.J. Cortés. 2020. Inheritance of rootstock effects in avocado (Persea americana Mill.) cv. Hass. Front. Plant Sci. 11, 555071. Doi: https://doi.org/10.3389/fpls.2020.555071
- Sánchez-González, E.I., A. Gutiérrez-Díez, and N. Mayek-Pérez. 2020. Outcrossing rate and genetic variability in Mexican race avocado. J. Am. Soc. Hort. Sci. 145(1), 53-59. Doi: https://doi.org/10.21273/JASHS04785-19
- Tripathi, P. and G. Karunakaran. 2019. Standardization of time and method of propagation in avocado. J. Appl. Hort. 21, 67-69. Doi: https://doi.org/10.37855/jah.2019.v21i01.12
- Viera, W., A. Sotomayor, P. Viteri, R. Ushiña, and K.J. Cho. 2017. Germoplasma local de aguacate (Persea americana Mill.) tipo´ criollo para la producción de portainjertos en el Ecuador. pp. 21-27. In Mem. V Cong. Latinoam. Aguacate. Asociación de Productores y Exportadores de Jalisco (APEAJAL). Ciudad Guzmán, Mexico.