Skip to main navigation menu Skip to main content Skip to site footer

Chlorophyll concentration estimation using non-destructive methods in grapes (Vitis vinifera L.) cv. Riesling Becker

Abstract

Pigment analysis is a laboratory procedure and is not an immediate measurement to be performed in situ. The SPAD 502 and CCM-200 are equipments used for non-destructive, fast, and indirect estimates of chlorophyll contents. The concentration of photosynthetic pigments is related to the foliar concentration of nitrogen, so indirectly, it is possible to observe the deficiency or excess of this element, providing a technical basis to suggest the proper management of the crop in order to potentiate the photosynthetic efficiency, quality and yield of a vineyard. This research sought to compare measurements between the portable chlorophyll meter SPAD-502 vs. CCM-200 in the Riesling Becker grape variety under cold tropical climate conditions to determine the behavior of chlorophyll during the growth of leaves 4, 5 and 6, from flowering to harvest. The relationship between the measurements with the SPAD-502 and the CCM-200 were fit to a second degree polynomial determined with the equation for the Chlorophyll Concentration Index: CCI = 0.014SPAD2-0.2396SPAD + 5.8021. With a value of R2=0.9343 (n=96; P≤0.0001), which indicates that there was a high correlation between the portable equipment used in the present study to determine chlorophyll with a non-destructive method. The evaluations carried out with the equipment obtained fast and reliable measurements, with the choice of the moment of measurement according to the phenological stage of the plant being important because of the high variability in chlorophyll contents that are presented in relation to the phylotaxy.

Keywords

Pigments, Portable meter, CCM-200, SPAD 502, Non-destructive methods, Tropical vineyards, Diagnostic indicators

PDF (Español)

References

  1. Agronet. 2018. Análisis –Estadísticas, cultivo de Uva Colombia. En: Ministerio de Agricultura y Desarrollo Rural de Colombia, http://www.agronet.gov.co; consulta: junio de 2018.
  2. Alizadeh, M., S.K. Singh., V.B Patel., R.C. Bhattacharya y B.P. Yadav. 2010. In vitro responses of grape rootstocks to NaCl. Biol. Plant. 54, 381-385. Doi: 10.1007/s10535-010-0069-0
  3. Allen, F., T. Center y E. Mattison. 2012. In situ estimates of water hyacinth leaf tissue nitrogen using a SPAD-502 chlorophyll meter. Aquat. Bot. 100, 72-75. Doi: 10.1016/j.aquabot.2012.03.005
  4. Almanza-Merchán, P. 2011. Determinación del crecimiento y desarrollo del fruto de vid (Vitis vinífera L.) bajo condiciones de clima frío tropical. Tesis de doctorado. Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá.
  5. Almanza-Merchán, P., S. González-Merchán y H.E. Balaguera-López. 2012a. La posición de la hoja y su efecto sobre la calidad y producción de frutos de vid (Vitis vinifera L.) var. Riesling × Silvaner. Rev. Colomb. Cienc. Hortic. 6(1), 9-18. Doi: 10.17584/rcch.2012v6i1.1283
  6. Almanza-Merchan, P., P. Serrano y G. Fischer. 2012b, Manual de viticultura tropical. Colombia. Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
  7. Arregui, L., M. Merina y A. Mingo. 2000. Aplicación del medidor portátil en los programas de fertilización nitrogenada en patata. pp. 157-170. En: Memorias Congreso Iberoamericano de Investigación y Desarrollo en Patata. Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, España.
  8. Bertamini, M. y N. Nedunchezhian. 2003. Photosynthetic functioning of individual grapevine leaves (Vitis vinifera L. cv. Pinot noir) during ontogeny in the field. Vitis 42(1), 13-17.
  9. Borhan, M.S., S. Panigrahi, M. Satter y H. Gu. 2017, Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Inf. Process. Agr. 4(4), 275-282. Doi: 10.1016/j.inpa.2017.07.005
  10. Callejas, R., E. Kania, A. Contreras, C. Peppi y L. Morales. 2013. Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia 31(4), 19-26. Doi: 10.4067/S0718-34292013000400003
  11. Candolfi-Vasconcelos, M. y W. Koblet. 1991. Influence of partial defoliation on gas exchange parameters and chlorophyll content on field grown grapevines mechanisms and limitations of the compensation capacity. Vitis 30, 129-141.
  12. Cao, Q., Y. Miao, G. Feng, X. Gao, F. Li, B. Liu, S. Yue, S. Cheng, S. Ustin y R. Khosla. 2015. Active canopy sensing of winter wheat nitrogen status: an evaluation of two sensor systems. Comp. Elect. Agric. 112, 54-67. Doi: 10.1016/j.compag.2014.08.012
  13. Cate, T. y T. Perkins. 2003. Chlorophyll content monitoring in sugar maple (Acer saccharum). Tree Physiol. 23, 1077-1079. Doi: 10.1093/treephys/23.15.1077
  14. Chang, S. y D. Robinson. 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. Forest Ecol. Manage. 181(3), 331-338. Doi: 10.1016/S0378-1127(03)00004-5
  15. Cho, Y.Y., S. Oh, M.M. Oh y J.E. Son. 2007. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci. Hort. 111(4), 330-334. Doi: 10.1016/j.scienta.2006.12.028
  16. Delegido, J., L. Alonso, G. González y J. Moreno. 2010. Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int. J. Appl. Earth Obs. Geoinf. 12(3), 165-174. Doi: 10.1016/j.jag.2010.02.003
  17. Do Amarante, C., O. Zanuzo, A. Miqueloto, C. Steffens, J. Erhart y J. De Almeida. 2009. Quantificação da área e do teor de clorofilas emfolhas de plantas jovens de videira ‘cabernet sauvignon’ mediante métodos nãodestrutivos. Rev. Bras. Frutic. 31(3), 680-686. Doi: 10.1590/S0100-29452009000300009
  18. Elarab, M., A. Ticlavilca., A. Torres-Rua., I. Maslova y M. McKee. 2015. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 43, 32-42. Doi: 10.1016/j.jag.2015.03.017
  19. Fanizza, G., L. Ricciardi y C. Bagnulo. 1991. Leaf greenness measurements to evaluate water stressed genotypes in Vitis vinifera. Euphytica 55(1), 27-31. Doi: 10.1007/BF00022556
  20. Hawkins, T., E. Gardiner y G. Comer. 2009. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. J. Nat. Conserv. 17(2), 123-127. Doi: 10.1016/j.jnc.2008.12.007
  21. Hunter, J. y J. Visser. 1989. The effect of partial defoliation, leaf position and developmental stage of the vine on leaf chlorophyll concentration in relation to the photosynthetic activity and light intensity in the canopy of Vitis vinifera L. cv. Cabernet Sauvignon. S. Afr. J. Enol. Vitic. 10, 67-73. Doi: 10.21548/10-2-2289
  22. Iacono, F., M. Bertamini, A. Scienza y B. Coombe. 1995. Differential effects of canopy manipulation and shading of Vitis vinifera L. cv. Cabernet Sauvignon. leaf gas exchange, photosynthetic electron transport rate and sugar accumulation in berries. Vitis 34(4), 201-206.
  23. Kapotis, G., G. Zervoudakis, T. Veltsistas y G. Salahas. 2003. Comparaison of chlorophyll meter readings with leaf chlorophyll concentration in Amaranthus vlitus: correlation with physiological processes. Russ. J. Plant Physiol. 50(3), 395-397. Doi: 10.1023/A:1023886623645
  24. Lorenz, D.H., K.W. Eichhorn H. Blei-Holder R. Klose, U. Meier y E. Weber. 1994. Phänologische entwicklungsstadien der weinrebe (Vitis vinifera L. ssp. vinifera). Vitic. Enol. Sci. 49, 66-70. Doi: 10.1111/j.1755-0238.1995.tb00085.x
  25. Novoa, R. y A. Villagran. 2002. Evaluación de un instrumento medidor de clorofila en la determinación de niveles de nitrógeno foliar en maíz. Agric. Téc. 62(1), 165-171. Doi: 10.4067/S0365-28072002000100017
  26. Ocon, P. 2008. Utilización del clorofilometro SPAD 502 para diagnosticar la deficiencia de nitrógeno en sorgo (Sorgum bicolor [L.] Moench) bajo distintas dosis de nitrógeno. Trabajo de grado. Facultad de Agronomía, Universidad Nacional Agraria, Managua.
  27. Pinzón-Sandoval, E., I. Arias-Burgos y G. Cely-Reyes. 2017. Dinámica del crecimiento del fruto de vid (Vitis vinífera L.) cv ‘Sauvignon’ en trópico alto Colombiano. Cult. Cient. 15, 106-115.
  28. Quijano, M. 2004. Ecología de una conexión solar. De la adoración del sol al desarrollo vitivinícola regional. Cult. Cient. 2, 5-9.
  29. Ramírez, V., A. Moreno y J. López. 2012. Evaluación temprana de la deficiencia del nitrógeno en café y aplicaciones. Avances Técnicos Cenicafe 420, 1-8
  30. Reyes, J., C. Correa y J. Zúñiga. 2017. Reliability of different color spaces to estimate nitrogen SPAD values in maize. Comp. Elect. Agric. 143, 14-22. Doi: 10.1016/j.compag.2017.09.032
  31. Richardson, A., S. Duigan y G. Berlyn. 2002. Evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 153, 185-194. Doi: 10.1046/j.0028-646X.2001.00289.x
  32. Rincón, A. y G. Ligarreto. 2010. Relación entre nitrógeno foliar y el contenido de clorofila, en maíz asociado con pastos en el piedemonte llanero colombiano. Corpoica Cienc. Tecnol. Agropecu. 11(2), 122-128. Doi: 10.21930/rcta.vol11_num2_art:202
  33. Rodríguez, M., G. Alcántar, A. Aguilar, J. Etchevers y J. Zantizó. 1998. Estimación de la concentración de nitrógeno y clorofila en tomate mediante un medidor portátil de clorofila. Terra Latinoam. 16(2), 135-141.
  34. Romano, G., S. Zia, W. Spreer, C. Sanchez, J. Cairns, J. Araus y J. Müller. 2011. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Comp. Elect. Agric. 79, 67-74, Doi: 10.1016/j.compag.2011.08.011
  35. Rosolem, C. y V. Van Mellis. 2010. Monitoring nitrogen nutrition in cotton. Rev. Bras. Ciênc. Solo 34(5), 1601-1607. Doi: 10.1590/S0100-06832010000500013
  36. Sainz, H. y H. Echeverria. 1998. Relación entre las lecturas del medidor de clorofila (Minolta SPAD 502) en distintos estadios del ciclo del cultivo de maíz y el rendimiento en grano. Rev. Fac. Nac. Agron. Medellín 103(1), 37-44.
  37. Salisbury, F. y C. Ross. 1992. Fisiología vegetal. Editorial Iberoamerica, México DF.
  38. Senger, E., A. Peyrat., M. Martin y J. Montes. 2014. Genetic variation in leaf chlorophyll content of Jatropha curcas L. Ind. Crops Prod. 58, 204-211. Doi: 10.1016/j.indcrop.2014.04.003
  39. Steele, M., A. Gitelson y D. Rundquist. 2007. A comparaison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron. J. 100(3), 779-782. Doi: 10.2134/agronj2007.0254N
  40. Walteros, I.Y., D.C. Molano, P.J. Almanza-Merchán, M. Camacho y H.E. Balaguera-López. 2012. Efecto de la poda sobre la producción y calidad de frutos de Vitis vinifera L. var. Cabernet Sauvignon en Sutamarchán (Boyacá, Colombia). Rev. Colomb. Cienc. Hortic. 6(1), 19-30. Doi: 10.17584/rcch.2012v6i1.1279
  41. Wang, H.-F., Z.-G. Huo, G.-S. Zhou, Q.-H. Liao, H.-K. Feng y L. Wu. 2016. Estimating leaf SPAD values of freeze-damaged winter wheat using continuous wavelet analysis. Plant Physiol. Biochem. 98, 39-45. Doi: 10.1016/j.plaphy.2015.10.032
  42. Zulini, L., M. Rubinigg, R. Zorer y M. Bertamini. 2007. Effects of drought stress on chlorophyll fluorescente and photosynthetic pigment in grapevine leaves (Vitis vinifera cv. “White Riesling”). Acta Hortic. 754, 289-294. Doi: 10.17660/ActaHortic.2007.754.37

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.