Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Impacto de la temperatura del suelo sobre los frutales en escenarios de cambio climático

Soil temperature experiment on cape gooseberries, carried out at the Humboldt-University Berlin. Photo: G. Fischer

Resumen

El cambio climático por sus efectos sobre el aumento de la temperatura y el volumen de la precipitación tienen impactos importantes en los horizontes superficiales del suelo afectando el establecimiento, desarrollo y producción de los cultivos, con grave incidencia en la seguridad alimentaria. La radiación solar es la fuerza impulsora que influye el régimen térmico de las superficies terrestres. Aparte de la radiación, los efectos de la temperatura del suelo (TdS) son específicos según la especie frutal y principalmente modificados por la humedad, cobertura del suelo y temperatura del aire. La TdS creciente, dentro de un rango óptimo, promueve el crecimiento de las raíces y de toda la planta, además aumenta la absorción de agua y nutrientes, la fotosíntesis, transpiración y uso eficiente de agua, y también mismo los procesos microbianos. Estos efectos se demuestran en varios estudios de frutales presentados sobre vid, cítricos, uchuva, anonáceas, aguacate, olivo y tuna. Sin embargo, aparte de estos resultados positivos, es para tener en cuenta que el aumento de la TdS, debido al calentamiento global, puede generar estrés hídrico y a su vez afectar el rendimiento y la calidad de los frutales. Respecto al efecto de prácticas culturales, el mulching con láminas de plástico negro o azul pueden aumentar la temperatura del suelo y las de color blanco o plateado la disminuyen. En comparación con la temperatura del aire, la atención al aumento de la TdS en los estudios de fisiología de las plantas y del impacto climático ha sido más bien poco estudiado, en este sentido, este documento de revisión procura efectuar significativos aportes que permitan facilitar la toma de decisiones, tendiente a disminuir los efectos del calentamiento global con especial énfasis en los frutales

Palabras clave

Radiación solar, Mulching, Raíces, Absorción agua, Fotosíntesis, Uso eficiente de agua

PDF (English)

Referencias

Agustí, M. 2003. Citricultura. Ed. Mundi-Prensa, Madrid.

Agustí, M. 2010. Fruticultura. 2nd ed. Ed. Mundi-Prensa, Madrid.

Ahmad. P. and M.N.V. Prasad (eds.). 2012. Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, NY. Doi: 10.1007/978-1-4614-0815-4

Amare, G. and B. Desta. 2021. Coloured plastic mulches: impact on soil properties and crop productivity. Chem. Biol. Technol. Agric. 8(4). Doi: 10.1186/s40538-020-00201-8

Andrade-Hoyos, P., E. Molina Gayosso, C. De León, M.C. Espíndola Barquera, D. Alvarado Rosales, and A. López Jiménez. 2015. Mecanismos de defensa en portainjertos de aguacate ante Phytophthora cinnamomi Rands. Rev. Mex. Cienc. Agríc. 6(2), 347-360. Doi: 10.29312/remexca.v6i2.693


Bakshi, P., D.J. Bhat, V.K. Wali, A. Sharma, and M. Iqbal. 2014. Growth, yield and quality of strawberry (Fragaria x ananassa Duch.) cv. Chandler as influenced by various mulching materials. Afr. J. Agric. Res. 9(7), 701-706. Doi: 10.5897/AJAR2013.7983

Bhatt, R., R. Kaur, and A. Ghosh. 2019. Strategies to practice climate-smart agriculture to improve the livelihoods under the rice-wheat cropping system in South Asia. pp. 32-71. In: Meena, R.S., S. Kumar, J.S. Bohra, and M.L. Jat (eds.). Sustainable management of soil and environment. Springer Nature, Singapore. Doi: 10.1007/978-981-13-8832-3_2

Bonadeo, E., I. Moreno, M. Bongiovanni, R. Marzari, and M.J. Ganum Gorriz. 2017. El sistema suelo-planta. Principios generales. Editora UniRío, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina.

Bradford, J.B., D.R. Schlaepfer, W.K. Lauenroth, K.A. Palmquist, J.C. Chambers, J.D. Maestas, and S.B. Campbell. 2019. Climate-driven shifts in soil temperature and moisture regimes suggest opportunities to enhance assessments of dryland resilience and resistance. Front. Ecol. Evol. 7, 358. Doi: 10.3389/fevo.2019.00358

Callejas, R., P. Canales, and V. García de Cortázar. 2009. Relationship between root growth of ‘Thompson seedless’ grapevines and soil temperature. Chil. J. Agric. Res. 69(4), 496-502. Doi: 10.4067/S0718-58392009000400003

Callejas, H. and J. Castellanos. 1991. Regímenes de temperatura del suelo (actuales y propuestos). Suelos Ecuatoriales 2(1), 39-50.

Castro, E., Y. Agualimpia, and F. Sánchez. 2016. Modelo climático de los páramos de la cordillera Oriental colombiana aplicado a regímenes de temperatura del suelo. Perspectiva Geográfica 21(1), 33-62. Doi: 10.19053/01233769.4541

Centeno, A., H. Memmi, M.M. Moreno, C. Moreno, and D. Pérez-López. 2018. Water relations in olive trees under cold conditions. Sci. Hortic. 235, 1-8. Doi: 10.1016/j.scienta.2018.02.070

Ceulemans, R., I.A. Janssens, and M.E. Jach. 1999. Effects of CO2 enrichment on trees and forests: Lessons to be learned in view of future ecosystem studies. Ann. Bot. 84(5), 577-590. Doi: 10.1006/anbo.1999.0945

Cleves, J.A., J.A. Fonseca, and A.J. Jarma. 2012. Melón (Cucumis melo L.). pp. 701-727. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Daryanto, S., B. Fu, L. Wang, P.-A. Jacinthe, and W. Zhao. 2018. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 185, 357-373. Doi: 10.1016/j.earscirev.2018.06.013

Deng, L., K. Wang, J. Li, G. Zhao, and Z. Shangguan. 2016. Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the loess plateau, China. Ecol. Eng. 94, 525-531. Doi: 10.1016/j.ecoleng.2016.06.048

Drennan, P.M. and P.S. Nobel. 1998. Root growth dependence on soil temperature for Opuntia ficus-indica: influences of air temperature and a doubled CO2 concentration. Funct. Ecol. 12, 959-964. Doi: 10.1046/j.1365-2435.1998.00276.x

Fischer, G. (ed.). 2012. Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Fischer, G., H.E. Balaguera-López, and S. Magnitskiy. 2021. Review on the ecophysiology of important Andean fruits: Solanaceae. Revista UDCA Act. Div. Cient. 24(1), e1701. Doi: 10.31910/rudca.v24.n1.2021.1701

Fischer, G., G. Ebert, and P. Lüdders. 2000. Root-zone temperature effects on dry matter distribution and leaf gas exchange of cape gooseberry (Physalis peruviana L.). Acta Hortic. 531, 169-173. Doi: 10.17660/ActaHortic.2000.531.24

Fischer, G., G. Ebert, and P. Lüdders. 2007. Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. J. Appl. Bot. Food Qual. 81(1), 29-35.

Fischer, G. and P. Lüdders. 1992. Effect of root-zone temperature on growth and development of cape gooseberry (Physalis peruviana L.). Acta Hortic. 310, 189-198. Doi: 10.17660/ActaHortic.1992.310.23

Fischer, G. and P. Lüdders. 1999. Efecto de la temperatura del substrato sobre el consumo de agua y la transpiración en la uchuva (Physalis peruviana L.). Suelos Ecuatoriales 29(1), 45-49.

Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: 10.17584/rcch.2020v14i1.10893

Fischer, G. and J.O. Orduz-Rodríguez. 2012. Ecofisiología en los frutales. pp. 54-72. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Fischer, G. and F. Torres. 1998. Efecto de la temperatura del suelo sobre la planta. Parte 2: Fisiología y metabolismo. Rev. Comalfi 25(1-3), 40-50.

Fischer, G. and J. Torres. 1999. Efecto de la temperatura del suelo sobre la planta. Parte 3: Modificaciones de las propiedades térmicas del suelo. Rev. Comalfi 26 (1-3), 95-105.

Fischer, G., F. Torres, and J. Torres. 1997. Efecto de la temperatura del suelo sobre la planta. Parte 1: Crecimiento y desarrollo. Rev. Comalfi 24(3), 78-92.

Friedrich, G. and M. Fischer. 2000. Physiologische Grundlagen des Obstbaues. Verlag Eugen Ulmer, Stuttgart, Germany.

Gambetta, G., C. Mesejo, A. Gravina, M. Agustí, C. Fasiolo, F. Rey, C. Reig, A. Martínez-Fuentes, and O. Bentancur. 2015. Cobertura del suelo con cal: efecto en la reducción de la temperatura y cambio de color de mandarinas precoces. Agrociencia Uruguay 19(1), 31-40.

Helaly, A.A., Y. Goda, A.A. El-Rehim, A.A. Mohamed, and O.A.H. El-Zeiny. 2017. Effect of polyethylene mulching type on the growth, yield and fruits quality of Physalis pubescens. Adv. Plants Agric. Res. 6(5), 154-160. Doi: 10.15406/apar.2017.06.00229

Houser, C. 2010. Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr. 35, 65-86. Doi: 10.1177/0309133310386514

Ibacache, A., N. Rojas, and C. Jopia. 1999. Growing period of roots in cherimoya trees (Annona cherimola Mill.) in the north of Chile. Acta Hortic. 497, 331-346. Doi: 10.17660/ActaHortic.1999.497.18

IPCC, Intergovernmental Panel on Climate Change. 2019. Summary for Policymakers. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Geneva, Switzerland.

IPCC, Intergovernmental Panel on Climate Change. 2013. Summary for policymakers. In: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.). Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY.

Jiménez-Pérez, A., M.C. Cach-Pérez, M. Valdez-Hernández, and E. Rosa-Manzano. 2019. Effect of canopy management in the water status of cacao (Theobroma cacao) and the microclimate within the crop area. Bot. Sci. 97(4), 701-710. Doi: 10.17129/botsci.2256

Jungqvist, G., S.K. Oni, C. Teutschbein, and M.N. Futter. 2014. Effect of climate change on soil temperature in Swedish boreal forests. PLoS ONE 9(4), e93957. Doi: 10.1371/journal.pone.0093957

Kath, J. and K.G. Pembleton. 2019. A soil temperature decision support tool for agronomic research and management under climate variability: Adapting to earlier and more variable planting conditions. Comp. Electron. Agric. 162, 783-792. Doi: 10.1016/j.compag.2019.05.030

Kochhar, S.L. and S.K. Gujral (eds.). 2020. Plant physiology: Theory and applications. 2nd ed. Cambridge University Press, Cambridge, UK. Doi: 10.1017/9781108486392

Kurylyk, L., T. Kerry, K. MacQuarrie, and J. McKenzie. 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Sci. Rev. 138, 313-334. Doi: 10.1016/j.earscirev.2014.06.006

Lado, J., G. Gambetta, and L. Zacarias. 2018. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. 233, 238-248. Doi: 10.1016/j.scienta.2018.01.055

Lal, R. 2013. Soil carbon management and climate change. Carbon Manage. 4(4), 439-362. Doi: 10.4155/cmt.13.31

Lambers, H., F.S. Chapin III, and T.L. Pons. 2008. Plant physiological ecology. 2nd ed. Springer Science and Business Media, New York, NY. Doi: 10.1007/978-0-387-78341-3

Lambers, H. and F.S. Oliveira (eds.). 2019. Plant physiological ecology. 3rd ed. Springer Nature, Cham, Switzerland. Doi: 10.1007/978-3-030-29639-1

Lippmann, R., S. Babben, A. Menger, C. Delker, and M. Quint. 2019. Development of wild and cultivated plants under global warming conditions. Curr. Biol. 29, 1326-1338. Doi: 10.1016/j.cub.2019.10.016

López-Bellido, L. 2015. Agricultura, cambio climático y secuestro de carbono. Departamento de Ciencia y Recursos Agrícolas y Forestales, Universidad de Córdoba, Cordoba, Spain.

López-Valencia, D., M. Sánchez-Gómez, J.F. Acuña-Caita, and G. Fischer. 2018. Propiedades fisicoquímicas de siete variedades destacadas de fresa (Fragaria×ananassa Duch.) cultivadas en Cundinamarca (Colombia) durante su maduración. Cienc. Tecnol. Agropecu. 19(1), 1-18. Doi: 10.21930/rcta.vol19_num1_art:528

McMichael, B.L. and J.J. Burke. 2002. Temperature effects on root growth. pp. 717-728. In: Waisel, Y., A. Eshel, and L. Kafkafi (eds.). Plant roots – The hidden half. 3rd ed. Marcel Dekker, New York, NY.

Mahmud, K.P., B.P. Holzapfel, Y. Guisard, J.P. Smith, S. Nielsen, and S.Y. Rogiers. 2018. Circadian regulation of grapevine root and shoot growth and their modulation by photoperiod and temperature. J. Plant Physiol. 222, 86-93. Doi: 10.1016/j.jplph.2018.01.006

Marschner, H. 2002. Mineral nutrition of higher plants. 2nd ed. Academic Press, London.

Marschner, P. (ed.). 2012. Marschner’s mineral nutrition of higher plants. 3rd ed. Elsevier, Amsterdam.

Mesejo, C., G. Gambetta, A. Gravina, A. Martínez-Fuentes, C. Reig, and M. Agustí. 2012. Relationship between soil temperature and fruit colour development of ‘Clemenpons’ Clementine mandarin (Citrus clementina Hort ex. Tan). J. Sci. Food Agric. 92, 520-525. Doi: 10.1002/jsfa.4600

Mishra, A.K., S.B. Agrawal, and M. Agrawal. 2019. Rising atmospheric carbon dioxide and plant responses: current and future consequences. pp. 265-306. In: Climate change and agricultural ecosystems. Elsevier, Amsterdam, The Netherlands. Doi: 10.1016/B978-0-12-816483-9.00011-6

Mu, Z.J., A.Y. Huang, J.P. Ni, J.Q. Li, Y.Y. Liu, S. Shi, D.T. Xie, and R. Hatano. 2013. Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China. J. Soil Sci. Plant Nutr. 13(3), 566-578. Doi: 10.4067/S0718-95162013005000045

Nobel, P. (ed.). 2020. Physicochemical and environmental plant physiology. 5th ed. Cambridge, MA. Doi: 10.1016/C2018-0-04662-9

Ojeda, M., B. Schaffer, and F. Davies. 2004. Flooding, root temperature, physiology and growth of two Annona species. Tree Physiol. 24, 1019-1025. Doi: 10.1093/treephys/24.9.1019

Patil, D.D. and M.V. Kulkarni. 2016. Soil temperature and its influence of crop growth. Readers Shelf 12(9), 41-42.

Pérez-López, D., A. Moriana, M.C. Gijón, and J. Mariño. 2010. Water relation response to soil chilling of six olive (Olea europaea L.) cultivars with different frost resistance Spain. J. Agric. Res. 3, 780-789. Doi: 10.5424/sjar/2010083-1279

Pumpanen, J., J. Heinonsalo, T. Rasilo, and H. Ilvesniemi. 2012. Effect of increased soil temperature on CO2 exchange and net biomass accumulation in Picea abies, Pinus sylvestris and Betula pendula. Tree Physiol. 32, 724-736. Doi: 10.1093/treephys/tps007

Ramírez-Gil, J.G. and J.G. Morales-Osorio. 2018. Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Sci. Hortic. 240, 273-280. Doi: 10.1016/j.scienta.2018.06.047

Rao, K.V.R., A. Bajpai, S. Gangwar, L. Chourasia, and K. Soni. 2017. Effect of mulching on growth, yield and economics of watermelon (Citrullus lanatus Thunb). Environ. Ecol. 35(3D), 2437-2441.

Sauer, T.J. and X. Peng. 2018. Soil temperature and heat flux. In: Hatfield, J.L., M.V.K. Sivakumar, and J.H. Prueger (eds.). Agroclimatology: Linking agriculture to climate. Agron. Monogr. 60. American Society of Agronomy, Madison, WI. Doi: 10.2134/agronmonogr60.2016.0024

Sawan, Z.M. 2018. Climatic variables: Evaporation, sunshine, relative humidity, soil and air temperature and its adverse effects on cotton production. Inf. Proces. Agric. 5, 134-148. Doi: 10.1016/j.inpa.2017.09.006

Silva, D.M.N., L.C. Heitor, A.O. Candido, B.S.A. Moraes, G.S. Souza, J.B.S. Araújo, and E.S. Mendonça. 2020. Carbon balance in organic conilon coffee intercropped with tree species and banana. Rev. Árvore 44, e4421. Doi: 10.1590/1806-908820200000021

Sperling, O., L.C.R. Silva, A. Tixier, G. Théroux-Rancourt, and M.A. Zwieniecki. 2017. Temperature gradients assist carbohydrate allocation within trees. Sci. Rep. 7, 3265, Doi: 10.1038/s41598-017-03608-w

Sthapit, B.R., V.R. Rao, and S.R. Sthapit (eds.). 2012. Tropical fruit tree species and climate change. Bioversity International, New Delhi.

Surówka, E., M. Rapacz, and F. Janowiak. 2020. Climate change influences the interactive effects of simultaneous impact of abiotic and biotic stresses on plants. In: Hasanuzzaman, M. (ed.). Plant ecophysiology and adaptation under climate change: Mechanisms and perspectives Vol. I. Springer Nature, Singapore. Doi: 10.1007/978-981-15-2156-0_1

Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.

Torres, N., N. Goicoechea, and M.C. Antolín. 2018. Influence of irrigation strategy and mycorrhizal inoculation on fruit quality in different clones of Tempranillo grown under elevated temperatures. Agric. Water Manage. 202, 285-298. Doi: 10.1016/j.agwat.2017.12.004

UNEP, United Nations Environment Programme. 2009. Annual report. In: https://www.unep.org/resources/annual-report/unep-2009-annual-report; consulted: Abril, 2021.

Vera-Estrella, R., B. Barkla, J. Bohnert, and O. Pantoja. 2004. Novel regulation of aquaporins during osmotic stress. Plant Physiol. 135, 2318-2329. Doi: 10.1104/pp.104.044891

Yohannes, H. 2016. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Change 7(2), 335. Doi: 10.4172/2157-7617.1000335

Yusof, I.M., D.W. Buchanan, and J.F. Gerber. 1969. The response of avocado and mango to soil temperature. J. Amer. Soc. Hort Sci. 94(6), 619-621.

Villarreal-Navarrete, A., G. Fischer, L.M. Melgarejo, G. Correa, and L. Hoyos-Carvajal. 2017. Growth response of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum infection. Acta Hortic. 1178, 161-168. Doi: 10.17660/ActaHortic.2017.1178.28

Whiley, A.W., B.N. Wolstenholme, J.B. Saranah, and P.A. Anderson. 1990. Effect of root temperature on growth of two avocado rootstocks cultivars. Acta Hortic. 275, 153-160. Doi: 10.17660/ActaHortic.1990.275.15

Zhang, H., L. Binhui, D. Zhou, Z. Wu, and T. Wang. 2019. Asymmetric soil warming under global climate change. Int. J. Environ. Res. Public Health, 16, 1504. Doi: 10.3390/ijerph16091504

Zheng, X., D. Streimikiene, T. Balezentis, A. Mardani, F. Cavallaro, and L. Huchang. 2019. A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players. J. Clean. Prod. 234, 1113-1133. Doi: 10.1016/j.jclepro.2019.06.140

Zhu, H., S. Hu, J. Yang, F. Karamage, H. Li, and S. Fu. 2019. Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the Gurbantunggut desert in Xinjiang, China. J. Arid Land 11, 685-700. Doi: 10.1007/s40333-019-0104-8

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

<< < 1 2 3 4 5 6 7 8 > >>