Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate
Abstract
The objective of this research was to carry out an analysis of growth and physicochemical changes in cv. Anna apple in the Colombian high-altitude tropics using on the accumulation of growing degree days (GDD). Fruit samplings were taken every 15 days after anthesis (DAA) until harvest at 100 DAA (892.37 GDD). The dry and fresh weight and the equatorial and polar diameters followed a simple sigmoidal pattern. This was confirmed with the behavior of the growth rates. The equatorial and polar diameters increased drastically between 455.39 and 589.32 GDD (45 and 60 DAA), while the weight did not, indicating that the void spaces increased in the pulp during this period. The respiratory rate had the highest value (61.93±6.79 mg CO2 kg-1 h-1) at 159.61 GDD (15 DAA) and then decreased continuously until harvest. The firmness increased from 159.61 to 455.39 GDD and, then continuously decreased, at harvest, it was 38.38±3.48 N. The total soluble solids increased and had an ending value of 8.58±0.37ºBrix. The total titratable acidity increased from 159.61 to 319.79 GDD (30 DAA), and then decreased until the end of the study with an acidity of 0.71±0.03%. The color index increased linearly as a function of development, but the values were <0 at harvest. These results are an important advance for knowledge on the behavior of apple cv. Anna under high-altitude tropical conditions.
Keywords
Development, Maturation, Sigmoid growth, Cell expansion, Malus domestica Borkh
Author Biography
Helber Enrique Balaguera-López
Profesor asociado, Programa de Biologia, Universidad El Bosque
References
Africano-Pérez, K., P. Almanza-Merchán, H. Criollo, A. Herrera, and H.E. Balaguera-López. 2016. Caracterización poscosecha del fruto de durazno [Prunus persica (L.) Batsch] cv. Dorado producido bajo condiciones de trópico alto. Rev. Colomb. Cienc. Hortic. 10(2), 232-240. Doi: 10.17584/rcch.2016v10i2.5212
Almanza-Merchán, P., J. Velandia D., and Y. Tovar. 2016. Propiedades fisicoquímicas durante el crecimiento y desarrollo de frutos de lulo (Solanum quitoense Lam.). Rev. Colomb. Cienc. Hortic. 10(2), 222-231. Doi: 10.17584/rcch.2016v10i2.5065
Atay, E., L. Pirlak, and N. Atay. 2010. Determination of fruit growth in some apple varieties. J. Agric. Sci. 16, 1-8. Doi: 10.1501/Tarimbil_0000001115
Balaguera-López, H.E., G. Fischer, and S. Magnitskiy. 2020. Relaciones semilla-fruto en frutos carnosos: Rol de las hormonas. Una revisión. Rev. Colomb. Cienc. Hortic. 14(1), 90-103. Doi: 10.17584/rcch.2020v14i1.10921
Beshir, W.F., V.B.M. Mbong, M.L.A.T.M. Hertog, A.H. Geeraerd, W. Van den Ende, and B.M. Nicolaï. 2017. Dynamic labeling reveals temporal changes in carbon re‐allocation within the central metabolism of developing apple fruit. Front. Plant Sci. 8, 1-16. Doi: 10.3389/fpls.2017.01785
Campos, T. 2013. Especies y variedades de hoja caduca en Colombia. pp. 47-67. In: Miranda, D., G. Fischer, and C. Carranza (eds.). Los frutales caducifolios en colombia Situación actual, sistemas de cultivo y plan de desarrollo. Sociedad Colombiana de Ciencias Hortícolas, Bogota.
Casierra-Posada, F., D.I. Hernandez, P. Lüdders, and G. Ebert. 2003. Crecimiento de frutos y ramas de manzano ‘Anna’ (Malus domestica Borkh) cultivado en los altiplanos colombianos. Agron. Colomb. 21(1-2), 69-73.
Casierra-Posada, F., V. Zapata-Casierra, and J. Cutler. 2017. A comparison of direct and indirect methods for estimating leaf area in peach (Prunus persica) and plum (Prunus salicina) cultivars. Rev. Colomb. Cienc. Hortic. 11(1), 30-38. Doi: 10.17584/rcch.2017v11i1.6143
Castro Neto, M.T. and D.H. Reinhardt. 2003. Relações entre parâmetros de crescimento do fruto de manga cv. Haden. Rev. Bras. Frutic. 25(1), 35-37. Doi: 10.1590/S0100-29452003000100011
Chaves, B., M.R. Salazar, T. Schmidt, N. Dasgupta, and G. Hoogenboom. 2017. Modeling fruit growth of apple. Acta Hortic. 1160, 335-340. 10.17660/ActaHortic.2017.1160.48
Costa, F., R. Alba, H. Schouten, V. Soglio, L. Gianfranceschi, S. Serra, S. Musacchi, S. Sansavini, G. Costa, Z. Fei, and J. Giovannoni. 2010. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC Plant Biol. 10, 229. Doi: 10.1186/1471-2229-10-229
Dash, M., L.K. Johnson, and A. Malladi. 2012. Severe shading reduces early fruit growth in apple by decreasing cell production and expansion. J. Am. Soc. Hortic. Sci. 137, 275-282. Doi: 10.21273/JASHS.137.5.275
Duran, S. 1983. Frigoconservación de la fruta. Editorial AEDOS, Barcelona, Spain.
Fathizadeh, Z., M. Aboonajmi, and S.R. Hassan-Beygi. 2021. Nondestructive methods for determining the firmness of apple fruit flesh. Inf. Process. Agric. Doi: 10.1016/j.inpa.2020.12.002
Filip, M., M. Vlassa, V. Coman, and A. Halmagyi. 2016. Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC–RI optimized method. Food Chem. 199, 653-659. Doi: 10.1016/j.foodchem.2015.12.060
Fischer, G. 2013 Comportamiento de los frutales caducifolios en el trópico. pp. 31-46. En: Miranda, D., G. Fischer, and C. Carranza (eds.). Los frutales caducifolios en Colombia: Situación actual, sistemas de cultivo y plan de desarrollo. Sociedad Colombiana Ciencias Hortícolas, Bogota.
Hernández, M.S., O. Martínez, and J.P. Fernández-Trujillo. 2007. Behavior of arazá (Eugenia stipitata Mc Vaugh) fruit quality traits during growth, development and ripening. Sci. Hortic. 111, 220-227. Doi: 10.1016/j.scienta.2006.10.029
Hester, S. and O. Cacho. 2003. Modelling apple orchard systems. Agric. Syst. 77, 137-154. Doi: 10.1016/S0308-521X(02)00106-3
Iglesias, I., G. Echeverria, and M. Lopez. 2012. Fruit color development, anthocyanin content, standard quality, volatile compound emissions and consumer acceptability of several ‘Fuji’ apple strains. Sci. Hortic. 137, 138-147. Doi: 10.1016/j.scienta.2012.01.029
Jing, S. and A. Malladi. 2020. Higher growth of the apple (Malus × domestica Borkh.) fruit cortex is supported by resource intensive metabolism during early development. BMC Plant Biol. 20(75), 2-19. 10.1186/s12870-020-2280-2
Kays, S. (ed.). 2004. Postharvest biology. Exon Press, Athens, GA.
Lancaster, J.E. 1992. Regulation of skin colour in apples. Crit. Rev. Plant Sci. 10, 487-502. Doi: 10.1080/07352689209382324
Li, M., F. Feng, and L. Cheng. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One 7, e33055. Doi: 10.1371/journal.pone.0033055
Li, M., D. Li, F. Feng, S. Zhang, F. Ma, and L. Cheng. 2016. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. J. Expt. Bot. 67, 5145-5157. Doi: 10.1093/jxb/erw277
Lin-Wang, K., D. Micheletti, J. Palmer, R. Volz, L. Lozano, R. Espley, R.P. Hellens, D. Chagnè, D.D. Rowan, M. Troggio, I. Iglesias, and A.C. Allan. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ. 34, 1176-1190. Doi: 10.1111/j.1365-3040.2011.02316.x
Liu, R., Y. Wang., G. Qin, and S. Tian. 2016. Molecular basis of 1-methylcyclopropene regulating organic acid metabolism in apple fruit during storage. Postharvest Biol. Technol. 117, 57-63. Doi: 10.1016/j.postharvbio.2016.02.001
Magein, H. 1989. Growth and abscission dynamics of ‘Cox’s Orange Pippin’ and ‘Golden Delicious’ apple fruits. J. Hortic. Sci. 64, 265-273. Doi: 10.1080/14620316.1989.11515954
Malladi, A. 2020. Molecular physiology of fruit growth in apple. pp. 1-42. In: Warrington, I. (ed.). Horticultural reviews. Vol. 47. John Wiley & Sons, Hoboken, NJ. Doi: 10.1002/9781119625407.ch1
Mariño-González, L.A., C.M. Buitrago, H.E. Balaguera-López, and E. Martínez-Quintero. 2019. Effect of 1-methylcyclopropene and ethylene on the physiology of peach fruits (Prunus persica L.) cv. Dorado during storage. Rev. Colomb. Cienc. Hortic. 13(1), 46-54. Doi: 10.17584/rcch.2019v13i1.8543
Molina-Ochoa, M., J. Vélez-Sánchez, and P. Rodríguez. 2016. Efecto del riego deficitario controlado en las tasas de crecimiento del fruto de pera (Pyrus communis L.), var. Triunfo de Viena. Rev. Colomb. Cienc. Hortic. 9(2), 234-246. Doi: 10.17584/rcch.2015v9i2.4179
Morais, P.L.D., M.R.A. Miranda, L.C.O. Lima, J.D. Alves, R.E. Alves, and J.D. Silva. 2008. Cell wall biochemistry of sapodilla (Manilkara zapota) submitted to 1-methylcyclopropene, Braz. J. Plant Physiol. 20(2), 85-94. Doi: 10.1590/S1677-04202008000200001
Ochoa-Vargas, L.M., H.E. Balaguera-López, G. Ardila-Roa, E.H. Pinzón-Sandoval, and J. Álvarez-Herrera. 2016. Crecimiento y desarrollo del fruto de lulo (Solanum quitoense Lam.) en el municipio de San Antonio del Tequendama (Colombia). Cienc. Tecnol. Agropec. 17(3), 347-359. Doi: 10.21930/rcta.vol17_num3_art:512
Orduz-Ríos, F., K. Suárez-Parra, P. Serrano-Cely, P. Serrano-Agudelo, and N. Forero-Pineda. 2020. Evaluation of N-P-K-Ca-Mg dynamics in plum (Prunus salicina Lindl.) var. Horvin under nursery conditions. Rev. Colomb. Cienc. Hortic. 14(3), 334-341. Doi: 10.17584/rcch.2020v14i3.11941
Puentes, G., L.F. Rodriguez, and L.T. Bermudez. 2008. Análisis de grupo de las empresas productoras de frutales caducifolios del departamento de Boyacá. Agron. Colomb. 26(1), 146-154.
Saei, A., D.S. Tustin, Z. Zamani, A. Talaie, and A.J. Hall. 2011. Cropping effects on the loss of apple fruit firmness during storage: The relationship between texture retention and fruit dry matter concentration. Sci. Hortic. 130, 256-265. Doi: 10.1016/j.scienta.2011.07.008
Sha, J., F. Wang, X. Xu, Q. Chen, Z. Zhu, and Y. Jiang. 2020. Studies on the translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in ‘Fuji’ apple. Plant Physiol. Biochem. 154, 636-645. Doi: 10.1016/j.plaphy.2020.06.044
Verbančič, J., J.E. Lunn, M. Stitt, and S. Persson. 2018. Carbon supply and the regulation of cell wall synthesis. Mol. Plant. 11, 75-94. Doi: 10.1016/j.molp.2017.10.004
Walker, R.P. and F. Famiani. 2018. Organic acids in fruits: metabolism, functions and contents. Hortic. Rev. 46, 371-430. Doi: 10.1002/9781119431077.ch8
Wulfsohn, D., F. Aravena, C. Potin, I., Zamora, and M. García-Finana. 2012. Multilevel systematic sampling to estimate total fruit number for yield forecasts. Prec. Agric. 13, 256-275. Doi: 10.1007/s11119-011-9245-2
Yao, J.L., J. Xu, A. Cornille, S. Tomes, S. Karunairetnam, Z. Luo, H. Bassett, C. Whitworth, J. Rees‐George, C. Ranatunga, A. Snirc, R. Crowhurst, N. de Silva, B. Warren, C. Deng, S. Kumar, D. Chagné, V.G.M. Bus, R.K. Volz, E.H.A. Rikkerink, S.E. Gardiner, T. Giraud, R. MacDiarmid, and A.P. Gleave. 2015. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. Plant J. 84, 417-427. Doi: 10.1111/tpj.13021
Yuri, J.A., J. Gonzalez, J. Verdugo, and A. del Pozo. 2011. Responses of fruit growth, quality, and productivity to crop load in apple cv. Ultra Red Gala/MM111. Sci. Hortic. 127, 305-312. Doi: 10.1016/j.scienta.2010.10.021
Zadravec, P., R. Veberic, F. Stampar, K. Elerc, and V. Schmitzer. 2013. Fruit size prediction of four apple cultivars: Accuracy and timing. Sci. Hortic. 160, 177-181. Doi: 10.1016/j.scienta.2013.05.046
Zhang, Y., L. Zheng., M. Li., X. Deng, and J. Zhang. 2015. Predicting apple sugar content based on spectral characteristics of Apple tree leaf in different phenological phases. Comput. Electron. Agr. 112, 20-27. Doi: 10.1016/j.compag.2015.01.006
Zhang, Y., P. Li, and L. Cheng. 2010. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem. 123, 1013-1018. Doi: 10.1016/j.foodchem.2010.05.053
Zhu, L., C. Yang, Y. You, W. Liang, N. Wang, F. Ma, and C. Li. 2019. Validation of reference genes for qRT-PCR analysis in peel and flesh of six apple cultivars (Malus domestica) at diverse stages of fruit development. Sci. Hortic. 244, 165-171. Doi: 10.1016/j.scienta.2018.09.033