Análisis de variabilidad, correlación y sendero en cultivares erectos y postrados de caupí (Vigna unguiculata [L.] Walp.)
Resumen
El fríjol caupí (Vigna unguiculata [L.] Walp.) es la leguminosa más importante del Caribe colombiano, la cual es cultivada con genotipos de hábito de crecimiento postrado, con rendimientos que no superan los 700 kg ha-1. La cosecha manual resulta muy costosa para la rotación de cultivos en la agricultura empresarial, por lo que se requiere de cultivares de hábito de crecimiento erecto. La investigación se realizó en el primer semestre de 2022, en el área experimental de la Universidad de Córdoba (Montería-Colombia). Se evaluaron 16 genotipos erectos y cinco postrados incluido el testigo, bajo el diseño de bloques completos al azar con cinco repeticiones; cada unidad experimental estuvo conformada por dos surcos de 5 m de longitud, con distancia entre plantas de 0,15 m y entre surcos de 0,40 m para una densidad de población de 166.000 plantas/ha. Los resultados indicaron variabilidad genética, la cual posibilita la selección fenotípica exitosa, de acuerdo con los parámetros genéticos estimados. Así mismo, la existencia de correlaciones positivas y significativas de los componentes del rendimiento con el rendimiento. Además, el desdoblamiento de las correlaciones genotípicas mediante análisis de sendero indica que, el espesor del grano es una característica importante y fácil de medir para incrementar el rendimiento.
Palabras clave
Leguminosas, Calidad de grano, Variabilidad genética, Seguridad alimentaria, Composición nutricional
Citas
- Abaidoo, R., M.O. Dare, S. Killani, and A. Opoku. 2017. Evaluation of early maturing cowpea (Vigna unguiculata) germplasm for variation in phosphorus use efficiency and biological nitrogen fixation potential with indigenous rhizobial populations. J. Agric. Sci. 155(1), 102-116. Doi: https://doi.org/10.1017/S002185961500115X
- Agronet. 2022. Área, producción y rendimiento nacional por cultivo. In: https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1; consulted: October, 2022.
- Bandi, H.R.K., K.N. Rao, K.V. Krishna, and K. Srinivasulu. 2018. Correlation and path-coefficient estimates of yield and yield component traits in rice fallow blackgram (Vigna mungo (L.) Hepper). Int. J. Curr. Microbiol. App. Sci. 7(3), 3304-3309. Doi: https://doi.org/10.20546/ijcmas.2018.703.380
- Cardona-Ayala, C., H. Araméndiz-Tatis, and A. Jarma-Orozco. 2013. Variabilidad genética en líneas de fríjol caupí (Vigna unguiculata L. Walp). Rev. Agron. 21(2), 7-18.
- Carvalho, A.F.U., N.M. Sousa, D.F. Farias, L.C.B. Rocha-Bezerra, R.M.P. Silva, M.P. Viana, S.T. Gouveia, S.S. Sampaio, M.B. Sousa, G.P.G. Lima, S.M. Morais, C.C. Barros, and F.R. Freire Filho. 2012. Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J. Food Compos. Anal. 26(1-2), 81-88. Doi: https://doi.org/10.1016/j.jfca.2012.01.005
- Cruz, C.D. 2016. Programa Genes V.2016.6.0 - Aplicativo computacional em genética e estatística. In: http://www.ufv.br/dbg/genes/genes.htm; consulted: October, 2022.
- Dinesh, H.B., K.P. Viswanatha, H.C. Lohithaswa, R. Pavan, and P. Singh. 2017. Variability, correlation and path analysis studies in F3 generation of cowpea [Vigna unguiculata (L.) Walp]. Int. J. Curr. Microbiol. Appl. Sci. 6(9), 1420-1428. Doi: https://doi.org/10.20546/ijcmas.2017.609.172
- Donkor, E.F., R.R. Adjei, B. Amadu, and A.S. Boateng. 2022. Genetic variability, heritability and association among yield components and proximate composition of neglected and underutilized Bambara groundnut [Vigna subterranea (L.) Verdc] accessions for varietal development in Ghana. Heliyon 8(6), e09691. Doi: https://doi.org/10.1016/j.heliyon.2022.e09691
- Espinosa, V. 2018. Construcción y análisis de los coeficientes de sendero. Acta Nova 8(4), 517-535.
- Johnson, H.W., H.F. Robinson, and R.E. Comstock. 1955. Estimates of genetic and environmental variability in soybeans. Agron. J. 47(7), 314-318. Doi: https://doi.org/10.2134/agronj1955.00021962004700070009x
- Jost, E., N.D. Ribeiro, S.M. Maziero, M.T.D.F. Possobom, D.P. Rosa, and L.S. Domingues. 2013. Comparison among direct, indirect and index selections on agronomic traits and nutritional quality traits in common bean. J. Sci. Food Agric. 93(5), 1097-104. Doi: https://doi.org/10.1002/jsfa.5856
- Lekshmanan, D.K. and M.A. Vahab. 2017. Correlation and path coefficient analysis of yield and its component characters among different accessions of cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Legume Res. 41(1), 53-56. Doi: https://doi.org/10.18805/10.18805/LR-3691
- Mafakheri, K., M.R. Bihamta, and A.R. Abbasi. 2017. Assessment of genetic diversity in cowpea (Vigna unguiculata L.) germplasm using morphological and molecular characterization. Cogent Food Agric. 3(1), 1327092. Doi: https://doi.org/10.1080/23311932.2017.1327092
- Martínez-Reina, A.M., C.C. Cordero-Cordero, and A.P. Tofiño-Rivera. 2022. Eficiencia técnica del frijol caupí (Vigna unguiculata L. Walp) en la Región Caribe de Colombia. Agron. Mesoam. 33(2), 47673. Doi: https://doi.org/10.15517/am.v33i2.47673
- Osipitan, O.A., J.S. Fields, S. Lo, and I. Cuvaca. 2021. Production systems and prospects of cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy 11(11), 2312. Doi: https://doi.org/10.3390/agronomy11112312
- Paltridge, N.G., L.J. Palmer, P.J. Milham, G.E. Guild, and J.C.R. Stangoulis. 2012. Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grain. Plant Soil 361(1-2), 251-260. Doi: https://doi.org/10.1007/s11104-011-1104-4
- Panchta, R., Preeti, and S. Arya. 2020. Variability, correlation and path analysis studies in grain cowpea [Vigna unguiculata (L.) Walp]. Indian J. Pure Appl. Biosci. 8(2), 169-172. Doi: http://doi.org/10.18782/2582-2845.8035
- Prasad, S.R., R. Prakash, C.M. Sharma, and M.F. Haque. 1981. Genotypic and phenotypic variability in quantitative characters in oat. Indian J. Agric. Sci. 51(7), 480-482.
- Silva, A.C., O.M. Morais, J.L. Santos, L.O. d’Arede, C.J. Silva, and M.M. Rocha. 2014. Estimativa de parâmetros genéticos em Vigna unguiculata. Rev. Cienc. Agrar. 37(4), 399-407.
- Singh, B.B. 2007. Recent progress in cowpea genetics and breeding. Acta Hortic. 752, 69-76. Doi: http://doi.org/10.17660/ActaHortic.2007.752.7
- Singh, P., S. Prasad, and W. Aalbersberg. 2016. Bioavailability of Fe and Zn in selected legumes, cereals, meat, and milk products consumed in Fiji. Food Chem. 207(15), 125-131. Doi: http://doi.org/10.1016/j.foodchem.2016.03.029
- Singh, A., Shweta, and V. Singh. 2018. Estimates of genetic variability, heritability and genetic advance for yield and yield component traits in Indian cowpea [Vigna unguiculata (L.) Walp.]. Int. J. Pure App. Biosci. 6(1), 1142-1147. Doi: http://doi.org/10.18782/2320-7051.5978
- Tirkey, M., G.M. Lal, and S.P. Anand. 2022. Estimation of correlation and path analysis for quantitative traits in cowpea (Vigna unguiculata (L.) Walp). Int. J. Plant Soil Sci. 34(22), 1194-1200. Doi: https://doi.org/10.9734/ijpss/2022/v34i2231486
- Varanya, A., G. Gayathri, K. Arya, C.T. Usha, P.G. Pratheesh, and H. Priyanka. 2022. Genetic variability and genetic parameters analysis of 143 fodder cowpea [Vigna unguiculata (L.) Walp] germplasm accessions for yield and yield attributing traits. Pharma Innov. J. 11(2), 2595-2600.
- Xiong, H., A. Shi, B. Mou, J. Qin, D. Motes, W. Lu, J. Ma, Y. Weng, W. Yang, and D. Wu. 2016. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One 11(8), e0160941. Doi: http://doi.org/10.1371/journal.pone.0160941