Variability, correlation, and path analysis in erect and prostrate cultivars of cowpea (Vigna unguiculata [L.] Walp.)
Abstract
The cowpea bean (Vigna unguiculata [L.] Walp.) is the most important legume in the Colombian Caribbean, and is cultivated with genotypes having prostrate growth habit, with yields that do not exceed 700 kg ha-1. Manual harvesting is very expensive for crop rotation in commercial agriculture, which is why cultivars with erect growth habit are required. The research was carried out in the first semester of 2022, in the experimental area of the Universidad de Córdoba (Monteria-Colombia). Sixteen erect genotypes and five prostrate genotypes, including the control, were evaluated under a randomized complete block design with five repetitions. Each experimental unit consisted of two rows of 5 m in length, with a distance between plants of 0.15 m and between rows of 0.40 m for a population density of 166.000 plants/ha. The results indicated genetic variability, which enables successful phenotypic selection, according to the estimated genetic parameters. Likewise, there was positive and significant correlations of performance components with yield. In addition, the unfolding of genotypic correlations by means of path analysis indicated that grain thickness is an important and easy to measure characteristic to increase yield.
Keywords
Legumes, Grain quality, Genetic variability, Food security, Nutritional composition
References
- Abaidoo, R., M.O. Dare, S. Killani, and A. Opoku. 2017. Evaluation of early maturing cowpea (Vigna unguiculata) germplasm for variation in phosphorus use efficiency and biological nitrogen fixation potential with indigenous rhizobial populations. J. Agric. Sci. 155(1), 102-116. Doi: https://doi.org/10.1017/S002185961500115X
- Agronet. 2022. Área, producción y rendimiento nacional por cultivo. In: https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1; consulted: October, 2022.
- Bandi, H.R.K., K.N. Rao, K.V. Krishna, and K. Srinivasulu. 2018. Correlation and path-coefficient estimates of yield and yield component traits in rice fallow blackgram (Vigna mungo (L.) Hepper). Int. J. Curr. Microbiol. App. Sci. 7(3), 3304-3309. Doi: https://doi.org/10.20546/ijcmas.2018.703.380
- Cardona-Ayala, C., H. Araméndiz-Tatis, and A. Jarma-Orozco. 2013. Variabilidad genética en líneas de fríjol caupí (Vigna unguiculata L. Walp). Rev. Agron. 21(2), 7-18.
- Carvalho, A.F.U., N.M. Sousa, D.F. Farias, L.C.B. Rocha-Bezerra, R.M.P. Silva, M.P. Viana, S.T. Gouveia, S.S. Sampaio, M.B. Sousa, G.P.G. Lima, S.M. Morais, C.C. Barros, and F.R. Freire Filho. 2012. Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J. Food Compos. Anal. 26(1-2), 81-88. Doi: https://doi.org/10.1016/j.jfca.2012.01.005
- Cruz, C.D. 2016. Programa Genes V.2016.6.0 - Aplicativo computacional em genética e estatística. In: http://www.ufv.br/dbg/genes/genes.htm; consulted: October, 2022.
- Dinesh, H.B., K.P. Viswanatha, H.C. Lohithaswa, R. Pavan, and P. Singh. 2017. Variability, correlation and path analysis studies in F3 generation of cowpea [Vigna unguiculata (L.) Walp]. Int. J. Curr. Microbiol. Appl. Sci. 6(9), 1420-1428. Doi: https://doi.org/10.20546/ijcmas.2017.609.172
- Donkor, E.F., R.R. Adjei, B. Amadu, and A.S. Boateng. 2022. Genetic variability, heritability and association among yield components and proximate composition of neglected and underutilized Bambara groundnut [Vigna subterranea (L.) Verdc] accessions for varietal development in Ghana. Heliyon 8(6), e09691. Doi: https://doi.org/10.1016/j.heliyon.2022.e09691
- Espinosa, V. 2018. Construcción y análisis de los coeficientes de sendero. Acta Nova 8(4), 517-535.
- Johnson, H.W., H.F. Robinson, and R.E. Comstock. 1955. Estimates of genetic and environmental variability in soybeans. Agron. J. 47(7), 314-318. Doi: https://doi.org/10.2134/agronj1955.00021962004700070009x
- Jost, E., N.D. Ribeiro, S.M. Maziero, M.T.D.F. Possobom, D.P. Rosa, and L.S. Domingues. 2013. Comparison among direct, indirect and index selections on agronomic traits and nutritional quality traits in common bean. J. Sci. Food Agric. 93(5), 1097-104. Doi: https://doi.org/10.1002/jsfa.5856
- Lekshmanan, D.K. and M.A. Vahab. 2017. Correlation and path coefficient analysis of yield and its component characters among different accessions of cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Legume Res. 41(1), 53-56. Doi: https://doi.org/10.18805/10.18805/LR-3691
- Mafakheri, K., M.R. Bihamta, and A.R. Abbasi. 2017. Assessment of genetic diversity in cowpea (Vigna unguiculata L.) germplasm using morphological and molecular characterization. Cogent Food Agric. 3(1), 1327092. Doi: https://doi.org/10.1080/23311932.2017.1327092
- Martínez-Reina, A.M., C.C. Cordero-Cordero, and A.P. Tofiño-Rivera. 2022. Eficiencia técnica del frijol caupí (Vigna unguiculata L. Walp) en la Región Caribe de Colombia. Agron. Mesoam. 33(2), 47673. Doi: https://doi.org/10.15517/am.v33i2.47673
- Osipitan, O.A., J.S. Fields, S. Lo, and I. Cuvaca. 2021. Production systems and prospects of cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy 11(11), 2312. Doi: https://doi.org/10.3390/agronomy11112312
- Paltridge, N.G., L.J. Palmer, P.J. Milham, G.E. Guild, and J.C.R. Stangoulis. 2012. Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grain. Plant Soil 361(1-2), 251-260. Doi: https://doi.org/10.1007/s11104-011-1104-4
- Panchta, R., Preeti, and S. Arya. 2020. Variability, correlation and path analysis studies in grain cowpea [Vigna unguiculata (L.) Walp]. Indian J. Pure Appl. Biosci. 8(2), 169-172. Doi: http://doi.org/10.18782/2582-2845.8035
- Prasad, S.R., R. Prakash, C.M. Sharma, and M.F. Haque. 1981. Genotypic and phenotypic variability in quantitative characters in oat. Indian J. Agric. Sci. 51(7), 480-482.
- Silva, A.C., O.M. Morais, J.L. Santos, L.O. d’Arede, C.J. Silva, and M.M. Rocha. 2014. Estimativa de parâmetros genéticos em Vigna unguiculata. Rev. Cienc. Agrar. 37(4), 399-407.
- Singh, B.B. 2007. Recent progress in cowpea genetics and breeding. Acta Hortic. 752, 69-76. Doi: http://doi.org/10.17660/ActaHortic.2007.752.7
- Singh, P., S. Prasad, and W. Aalbersberg. 2016. Bioavailability of Fe and Zn in selected legumes, cereals, meat, and milk products consumed in Fiji. Food Chem. 207(15), 125-131. Doi: http://doi.org/10.1016/j.foodchem.2016.03.029
- Singh, A., Shweta, and V. Singh. 2018. Estimates of genetic variability, heritability and genetic advance for yield and yield component traits in Indian cowpea [Vigna unguiculata (L.) Walp.]. Int. J. Pure App. Biosci. 6(1), 1142-1147. Doi: http://doi.org/10.18782/2320-7051.5978
- Tirkey, M., G.M. Lal, and S.P. Anand. 2022. Estimation of correlation and path analysis for quantitative traits in cowpea (Vigna unguiculata (L.) Walp). Int. J. Plant Soil Sci. 34(22), 1194-1200. Doi: https://doi.org/10.9734/ijpss/2022/v34i2231486
- Varanya, A., G. Gayathri, K. Arya, C.T. Usha, P.G. Pratheesh, and H. Priyanka. 2022. Genetic variability and genetic parameters analysis of 143 fodder cowpea [Vigna unguiculata (L.) Walp] germplasm accessions for yield and yield attributing traits. Pharma Innov. J. 11(2), 2595-2600.
- Xiong, H., A. Shi, B. Mou, J. Qin, D. Motes, W. Lu, J. Ma, Y. Weng, W. Yang, and D. Wu. 2016. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One 11(8), e0160941. Doi: http://doi.org/10.1371/journal.pone.0160941