Propagación de plantas de cannabis sativa (L.) mediante esquejes y uso de fitorreguladores auxínicos
Resumen
Cannabis sativa (L.) es una especie herbácea anual que ha sido ampliamente cultivada y utilizada como planta medicinal y con fines recreativos. Su valor medicinal se atribuye principalmente a un grupo de metabolitos secundarios llamados fitocannabinoides, que se concentran principalmente en los aceites esenciales de flores femeninas no fertilizadas. La reproducción asexual permite la descendencia de material vegetal, manteniendo las características genéticas de la planta madre. El objetivo de la investigación fue el de mejorar el proceso de propagación vegetativa de esquejes de Cannabis sativa (L.) cv. Eco-2 con características de productoras de fitocannabinoides de uso medicinal, mediante el empleo de fitorreguladores auxínicos de enraizamiento (ANA y AIB) en diferentes dosis. El estudio se realizó bajo condiciones de invernadero en el municipio de Pesca (Colombia). Se evaluaron dosis de 400, 800 y 1.000 mg L-1 y un testigo sin aplicación, se determinó la altura de la planta, el diámetro del tallo, número de ramas, volumen y longitud de raíz, y el porcentaje de enraizamiento. El mejor tratamiento se obtuvo con la aplicación de ANA en una dosis de 800 mg L-1 presentó un porcentaje de enraizamiento del 86,6%, una longitud y un volumen de raíz de 9,0 cm y 5,0 cm3, y un aumento de la longitud del esqueje de 3,8 cm, con diferencias significativas frente al tratamiento sin aplicación, luego de 4 semanas después de la siembra. El uso de fitorreguladores auxínicos se convierte en una alternativa con alto potencial para la propagación de plantas productoras de cannabinoides para uso medicinal.
Palabras clave
Fitohormonas, Fitocannabinoides, Reproducción vegetativa, Regulador fisiológico, Cáñamo
Citas
- Abdel-Rahman, S., E. Abdul-Hafeez, and A.M.M. Saleh. 2020. Improving rooting and growth of Conocarpus erectus stem cuttings using indole-3-butyric acid (IBA) and some biostimulants. Sci. J. Flowers Ornam. Plants 7(2), 109-129. Doi: https://doi.org/10.21608/sjfop.2020.96213
- Adhikary, D., M. Kulkarni, A. El-Mezawy, S. Mobini, M. Elhiti, R. Gjuric, A. Ray, P. Polowick, J.J. Slaski, M.P. Jones, and P. Bhowmik. 2021. Medical cannabis and industrial hemp tissue culture: present status and future potential. Front. Plant Sci. 12, 627240. Doi: https://doi.org/10.3389/fpls.2021.627240
- Alcantara, J.S., J. Acero, J.D. Alcantara, and R.M. Sánchez. 2019. Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. Nova 17(32), 109-129. Doi: https://doi.org/10.22490/24629448.3639
- Araméndiz-Tatis, H., C. Cardona-Ayala, M. Espitia-Camacho, A. Herrera-Contreras, and A. Villalba-Soto. 2023. Agronomic evaluation of Cannabis sativa (L.) cultivars in northern Colombia. Rev. Colomb. Cienc. Hortic. 17(1), e15695. Doi: https://doi.org/10.17584/rcch.2023v17i1.15695
- Bai, T., Z. Dong, X. Zheng, S. Song, J. Jiao, M. Wang, and C. Song. 2020. Auxin and its interaction with ethylene control adventitious root formation and development in apple rootstock. Front. Plant Sci. 11, 574881. Doi: https://doi.org/10.3389/fpls.2020.574881
- Blythe, E.K., J.L. Sibley, K.M. Tilt, and J.M. Ruter. 2007. Methods of auxin application in cutting propagation: a review of 70 years of scientific discovery and commercial practice. J. Environ. Hortic. 25(3), 166-185. Doi: https://doi.org/10.24266/0738-2898-25.3.166
- Borjas-Ventura, R., A. Julca-Otiniano, and L. Alvarado-Huamán. 2020. Las fitohormonas una pieza clave en el desarrollo de la agricultura. J. Selva Andina Biosph. 8(2), 150-164. Doi: https://doi.org/10.36610/j.jsab.2020.080200150
- Busta, L., I. Dweikat, S.J. Sato, H. Qu, Y. Xue, B. Zhou, L. Gan, B. Yu, T.E. Clemente, E.B. Cahoon, and C. Zhang. 2022. Chemical and genetic variation in feral Cannabis sativa populations across the Nebraska climate gradient. Phytochemistry 200, 113206. Doi: https://doi.org/10.1016/j.phytochem.2022.113206
- Campbell, S.M., S.L. Anderson, Z.T. Brym, and B.J. Pearson. 2021. Evaluation of substrate composition and exogenous hormone application on vegetative propagule rooting success of essential oil hemp (Cannabis sativa L.). PLoS ONE, 16(7), e0249160. Doi: https://doi.org/10.1371/journal.pone.0249160
- Campbell, L.G., S.G.U. Naraine, and J. Dusfresne. 2019. Phenotypic plasticity influences the success of clonal propagation in industrial pharmaceutical Cannabis sativa. PLoS ONE 14(3), e0213434. Doi: https://doi.org/10.1371/journal.pone.0213434
- Caplan, D., J. Stemeroff, M. Dixon, and Y. Zheng. 2018. Vegetative propagation of cannabis by stem cuttings: effects of leaf number, cutting position, rooting hormone, and leaf tip removal. Can. J. Plant Sci. 98(5), 1126-1132. Doi: https://doi.org/10.1139/cjps-2018-0038
- Chen, L.-M., J.-T. Cheng, E.-L. Chen, T.-J. Yiu, and Z.-H. Liu. 2002. Naphthaleneacetic acid suppresses peroxidase activity during the induction of adventitious roots in soybean hypocotyls. J. Plant Physiol. 159(12), 1349-1354. Doi: https://doi.org/10.1078/S0176-1617(04)70364-8
- da Costa, C.T., M.R. Almeida, C.M. Ruedell, J. Schwambach, F.S. Maraschin, and A.G. Fett-Neto. 2013. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 4, 133. Doi: https://doi.org/10.3389/fpls.2013.00133
- Durango, E. and A. Humanez. 2017. Enraizamiento de esquejes de caña agria (Cheilocostus speciosus. J. Koenig). Rev. Colomb. Biotecnol. 19(2), 133-139. Doi: https://doi.org/10.15446/rev.colomb.biote.v19n2.70395
- Finet, C. and Y. Jaillais. 2012. AUXOLOGY: when auxin meets plant evo-devo. Dev. Biol. 369(1), 19-31. Doi: https://doi.org/10.1016/j.ydbio.2012.05.039
- Garay-Arroyo, A., SM. De la Paz, B. García-Ponce, E.R. Álvarez-Buylla, and C. Gutiérrez. 2014. La homeostasis de las auxinas y su importancia en el desarrollo de Arabidopsis thaliana. Rev. Educ. Bioquim. 33(1), 13-22.
- Gil, C.S., H.Y. Jung, C. Lee, and S.H. Eom. 2020. Blue light and NAA treatment significantly improve rooting on single leaf-bud cutting of Chrysanthemum via upregulated rooting-related genes. Sci. Hortic. 274, 109650. Doi: https://doi.org/10.1016/j.scienta.2020.109650
- Hartmann, H.T., D.E. Kester, F.T. Davies, and R.L. Geneve. 2014. Hartmann and Kester’s principles and practices of plant propagation. 8th ed. Pearson, Upper Saddle River, NJ.
- Imin, N., M. Nizamidin, D. Daniher, K.E. Nolan, R.J. Rose, and B.G. Rolfe. 2005. Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol. 137(4), 1250-1260. Doi: https://doi.org/10.1104/pp.104.055277
- Jing, H. and L.C. Strader. 2019. Interplay of auxin and cytokinin in lateral root development. Int. J. Mol. Sci. 20(3), 486. Doi: https://doi.org/10.3390/ijms20030486
- Kamga, K.M.D., D.T. Tchatchoua, R.G. Caspa, G.Y.A. Bessa, and L.J. Baleba. 2018. Rooting ability of cocoa (Theobroma cacao L.) stem cuttings: effect of genotype, cutting type, hormone concentration and their interactions. Asian J. Agric. Hort. Res. 1(2), 1-10. Doi: https://doi.org/10.9734/ajahr/2018/40168
- Lata, H., S. Chandra, I.A. Khan, and M.A. ElSohly. 2016. In vitro propagation of Cannabis sativa L. and evaluation of regenerated plants for genetic fidelity and cannabinoids content for quality assurance. pp. 275-288. In: Jain, S.M. (ed.). Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. 2nd ed. Vol. 1391. Humana Press, New York, NY. Doi: https://doi.org/10.1007/978-1-4939-3332-7_19
- Lynch, R.C., D. Vergara, S. Tittes, K. White, C.J. Schwartz, M.J. Gibbs, T.C. Ruthenburg, K. de Cesare, D.P. Land, and N.C. Kane. 2016. Genomic and chemical diversity in Cannabis. Crit. Rev. Plant Sci. 35(5-6), 349-363. Doi: https://doi.org/10.1080/07352689.2016.1265363
- Mejía-Londoño, H.A., C.F. Barrera-Sánchez, and O.J. Córdoba-Gaona. 2023. Asexual propagation in female plants of cannabis (Cannabis sativa L.). Rev. Colomb. Cienc. Hortic. 17(2), e16046. Doi: https://doi.org/10.17584/rcch.2023v17i2.16046
- Pego, R.G., C.V.A. Fiorini, A.F.L. Machado, and M.V.S. Gomes. 2019. Propagation of Streptosolen jamesonii (Benth.) Miers by stem cutting treated with IBA in different substrates. Ornam. Hortic. 25(1), 26-33. Doi: https://doi.org/10.14295/oh.v25i1.1184
- Pizzatto, M., A. Wagner Júnior, D. Luckmann, K. Pirola, D.A. Cassol, and S.M. Mazaro. 2011. Influência do uso de AIB, época de coleta e tamanho de estaca na propagação vegetativa de hibisco por estaquia. Rev. Ceres 58(4), 487-492. Doi: https://doi.org/10.1590/s0034-737x2011000400013
- Potter, D.J. 2014. A review of the cultivation and processing of cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Test. Anal. 6(1-2), 31-38. Doi: https://doi.org/10.1002/dta.1531
- Preece, J.E. 2003. A century of progress with vegetative plant propagation. HortScience 38(5), 1015-1025. Doi: https://doi.org/10.21273/HORTSCI.38.5.1015
- R Core Team. 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/
- Rastogi, A., A. Siddiqui, B.K. Mishra, M. Srivastava, R. Pandey, P. Misra, M. Singh, and S. Shukla. 2013. Effect of auxin and gibberellic acid on growth and yield components of linseed (Linum usitatissimum L.). Crop Breed. Appl. Biotechnol. 13(2), 136-143. Doi: https://doi.org/10.1590/s1984-70332013000200006
- Raya-González, J., A. Oropeza-Aburto, J.S. López-Bucio, Á.A. Guevara-García, L. de Veylder, J. López-Bucio, and L. Herrera-Estrella. 2018. MEDIATOR18 influences Arabidopsis root architecture, represses auxin signaling and is a critical factor for cell viability in root meristems. Plant J. 96(5), 895-909. Doi: https://doi.org/10.1111/tpj.14114
- Rull, V. 2022. Origin, early expansion, domestication and anthropogenic diffusion of Cannabis, with emphasis on Europe and the Iberian Peninsula. Perspect. Plant Ecol. Evol. Syst. 55, 125670. Doi: https://doi.org/10.1016/j.ppees.2022.125670
- Saifuddin, M., N. Osman, and M.M. Rahman. 2013. Influence of different cutting positions and rooting hormones on root initiation and root-soil matrix of two tree species. Int. J. Agric. Biol. 15(3), 427-434.
- Salinas, M., G. Hakim, E. Gandolfo, J. De Lojo, E. Giardina, and A. Di Benedetto. 2022. Involvement of auxins in Impatiens walleriana plants grown in different plug tray systems during nursery. Ornam. Hortic. 28(3), 347-358. Doi: https://doi.org/10.1590/2447-536X.v28i3.2511
- Sourati, R., P. Sharifi, M. Poorghasemi, E.A. Vieira, A. Seidavi, N.A. Anjum, Z. Sehar, and A. Sofo. 2022. Effects of naphthaleneacetic acid, indole-3-butyric acid and zinc sulfate on the rooting and growth of mulberry cuttings. Int. J. Plant Biol. 13(3), 245-256. Doi: https://doi.org/10.3390/ijpb13030021
- Stephen, C., V.A. Zayas, A. Galic, and M.P. Bridgen. 2023. Micropropagation of hemp (Cannabis sativa L.). HortScience 58(3), 307-316. Doi: https://doi.org/10.21273/HORTSCI16969-22
- Sun, J., H. Li, H. Chen, T. Wang, J. Quan, and H. Bi. 2023. The effect of hormone types, concentrations, and treatment times on the rooting traits of morus ‘Yueshenda 10’ softwood cuttings. Life 13(4), 1032. Doi: https://doi.org/10.3390/life13041032
- Trancoso, I., G.A.R. Souza, P.R. Santos, K.D. Santos, R.M.S.N. Miranda, A.L.P.M. Amanda, D.Z. Santos, I.F. García-Tejero, and E. Campostrini. 2022. Cannabis sativa L.: crop management and abiotic factors that affect phytocannabinoid production. Agronomy 12(7), 1492. Doi: https://doi.org/10.3390/agronomy12071492
- Voeks, R. 2014. Cannabis: evolution and ethnobotany. AAG Rev. Books 2(2), 54-56. Doi: https://doi.org/10.1080/2325548x.2014.901859
- Wang, Y., D. Pang, L. Ruan, J. Liang, Q. Zhang, Y. Qian, Y. Zhang, P. Bai, L. Wu, H. Cheng, Q. Cui, L. Wang, and K. Wei. 2022. Integrated transcriptome and hormonal analysis of naphthalene acetic acid-induced adventitious root formation of tea cuttings (Camellia sinensis). BMC Plant Biol. 22, 319. Doi: https://doi.org/10.1186/s12870-022-03701-x
- Welling, M.T., L. Liu, T. Shapter, C.A. Raymond, and G.J. King. 2016. Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica 208(3), 463-475. Doi: https://doi.org/10.1007/s10681-015-1585-y