Regulation and prolongation of the postharvest life of Campomanesia lineatifolia R. & P. fruits through the interaction of ethylene, 1-methylcyclopropene and low temperatures

Main Article Content


Helber Enrique Balaguera Lopez


Champa (Campomanesia lineatifolia) is a berry with a pleasant taste and very perishability. The objective of this work was to study the regulation and prolongation of the postharvest life of champa fruits by the use of 1-methylcyclopropene (1-MCP) and refrigeration. To achieve this, two experiments were carried out: In experiment 1, four treatments were evaluated to understand the regulation of maturation. These were: control, 1-MCP, ethylene and 1-MCP + ethylene. The fruits were stored at room temperature. In experiment 2, the combination of the application or not of 1-MCP and two storage temperatures (room temperature [16±2°C] as well as 2±0.4°C) was carried out. In the two experiments, four repetitions were used, each one with approximately 500 g of fruits harvested stage 2 of maturity (25% yellow and 75% green respectively). The results of experiment 1 indicated that the fruits with 1-MCP presented the longest postharvest duration (17 days), firmness, and titratable acidity. They also showed the lowest respiratory rate and weight loss during the 10 days in which the fruits from all the treatments were kept. However, the fruits treated with ethylene had the opposite behavior, thus indicating that the changes evaluated during ripening are associated with this hormone. In experiment 2, the fruits refrigerated at 2°C with or without the application of 1-MCP had the longest postharvest duration, lasting for 26 days, compared to 12 days that the control fruits lasted (without refrigeration and with 1-MCP). The fruits with a longer duration showed a low respiratory rate during storage, as well as lower values of weight loss, color index, greater firmness, and acidity. It was also found that 1-MCP is efficient when the fruits are at room temperature.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.


Álvarez-Herrera, J.G., J.A. Galvis, and H.E. Balaguera. 2009a. Determinación de cambios físicos y químicos durante la maduración de frutos de champa (Campomanesia lineatifolia R. & P.). Agron. Colomb. 27, 253‑259.

Álvarez, J.G., H.E. Balaguera-López, and J.F. Cárdenas. 2009b. Caracterización fisiológica del fruto de champa (Campomanesia lineatifolia Ruiz. & Pavón), durante la poscosecha. Rev. U.D.C.A. Actual. Divulg. Cient. 12(2), 125-134. Doi:

An, J., R.A. Almasaud, M. Bouzayen, M. Zouine, and C. Chervin. 2020. Auxin and ethylene regulation of fruit set. Plant Sci. 292, 110381. Doi:

Balaguera, HE., J.G. Álvarez, and D.C. Bonilla. 2009. Crecimiento y desarrollo del fruto de champa (Campomanesia lineatifolia Ruiz & Pavón). Rev. U.D.C.A. Actual. Divulg. Cient. 12(2), 113‑123. Doi:

Balaguera-López, H.E., C.A. Martinez, and A. Herrera. 2015. Refrigeration affects the postharvest behavior of 1-methylcyclopropenetreated cape gooseberry (Physalis peruviana L.) fruits with the calyx. Agron. Colomb. 33(3), 356-364. Doi:

Balaguera-López, H.E. and A. Herrera. 2012a. Estudio de algunos cambios bioquímicos durante el crecimiento y hasta la cosecha del fruto de champa (Campomanesia lineatifolia R. & P. Familia Myrtaceae). Rev. Bras. Frutic. 34(2), 460-468. Doi:

Balaguera-López, H.E and A. Herrera. 2012b. Determining optimal harvest point for champa (Campomanesia lineatifolia R. & P.) fruit based on skin color. Ing. Investig. 32(1), 88-93.

Balaguera-López, H.E., M. Espinal-Ruiz, J.M. Rodríguez-Nieto, A. Herrera-Arévalo, and L. Zacarías. 2021. 1-Methylcyclopropene inhibits ethylene perception and biosynthesis: a theoretical and experimental study on cape gooseberry (Physalis peruviana L.) fruits. Postharvest Biol. Technol. 174, 111467. Doi:

Bapat, V.A., P.K. Trivedi, A. Ghosh, V.A. Sane, T.R. Ganapathi, and P. Nath. 2010. Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnol. Adv. 28, 94-107. Doi:

Barreto, C.F., R.R. Zandoná, G. Acorsi, A. Copatti, and J. Saavedra. 2017. Efeito do 1-Metilciclopropeno na qualidade pós-colheita de pessegos ‘Chiripá’. Rev. Iberoam. Tecnol. Postcos. 18(1), 33-38.

Binder, B. 2008. The ethylene receptors: complex perception for a simple gas. Plant Sci. 175, 8-17. Doi:

Brasil, I. and M.W. Siddiqui. 2018. Postharvest quality of fruits and vegetables: An Overview. pp. 1-40. In: Siddiqui, M.W. (ed). Preharvest modulation of postharvest fruit and vegetable quality. Academic Press, London.

Carrillo, M.P., M.S. Hernández, J. Barrera, O. Martínez, and J.P. Fernández-Trujillo. 2011. 1-Methylcyclopropene delays arazá ripening and improves postharvest fruit quality. LWT - Food Sci. Technol. 44, 250-255. Doi:

Cerqueira, T., A. Jacomino, F. Sasaki, and L. Amorim. 2009. Controle do amadurecimento de goiabas ‘Kumagai’ tratadas com 1-metilciclopropeno. Rev. Bras. Frutic. 31(3), 687-692. Doi:

Cheng, Y., L. Liu, Y. Feng, Y. Dong, and J. Guan. 2019. Effects of 1-MCP on fruit quality and core browning in ‘Yali’ pear during cold storage. Sci. Hortic. 243, 350-356. Doi:

Daulagala, C.H. and W.A.M. Daundasekera. 2015. Effect of 1-methylcyclopropene (1-MCP) treatment on postharvest quality and antifungal activity of avocado cv. ‘pollock’ under tropical storage conditions. Ceylon J. Sci. (Bio. Sci.), 44(2), 75-83. Doi:

Getinet, H., T. Seyoum, and K. Woldetsadik. 2008. Effect of cultivar, maturity stage and storage environment on quality of tomatoes. J. Food Eng. 87, 467-478. Doi:

In, B.C., J. Strablea, B.M. Binder, T.G. Falbel, and S.E. Patterson. 2013. Morphological and molecular characterization of ethylene binding inhibition in carnations. Postharvest Biol. Technol. 86, 272-279. Doi:

Kays, S. (ed.) 2004. Postharvest biology. Exon Press, Athens, GA.

Lado, J., O. Cronje, M.J. Rodrigo, and L. Zacarías. 2015. Resistance to chilling injury in red, lycopene-accumulating tissue of cold-stored grapefruits. Acta Hortic. 1079, 249-256. Doi:

Lata, D., V.S. Kuchi, and G.A. Nayik. 2017. 1-methylcyclopropene (1-MCP) for quality preservation of fresh fruits and vegetables. J. Postharvest Technol. 5(3), 9-15.

Lelievre, J.M., L. Tichit, P. Dao, L. Fillion, Y.W. Nam, J.C. Pech, and A. Latche. 1997. Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L.) fruits. Plant Mol. Biol. 33, 847-855. Doi:

Mariño-González, L., C. Buitrago, H. Balaguera-López, and E. Martínez-Quintero. 2019. Effect of 1-methylcyclopropene and ethylene on the physiology of peach fruits (Prunus persica L.) cv. Dorado during storage. Rev. Colomb. Cienc. Hortic. 13(1), 46-54. Doi:

Mir, N.A., E. Curell, N. Khan, M. Whitaker, and R.M. Beaudry. 2001. Harvest maturity, storage temperature, and 1-MCP application frequency alter firmness retention and chlorophyll fluorescence of ‘Redchief Delicious’ apples. J. Am. Soc. Hortic. Sci. 126, 618-624. Doi:

Muños, C.W., R.W. Chávez, L.C. Pabón, F.M.R. Rendón, M.P. Chaparro, and A.M. Otálvaro-Álvarez. 2015. Extracción de compuestos fenólicos con actividad antioxidante a partir de champa (Campomanesia lineatifolia). Rev. CENIC Cienc. Quim. 46, 38-46.

Nishiyama, K., M. Guis, J.K.C. Rose, Y. Kubo, K.A. Bennett, and L. Wangjin. 2007. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J. Exp. Bot. 58, 1281-1290. Doi:

Obenland, D., S. Collin, J. Sievert, and M.L. Arpaia. 2013. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature. Postharvest Biol. Technol. 82, 6-14. Doi:

Otálvaro-Álvarez, A.M., L.C. Pabón-Baquero, M.R. Rendón-Fernández, and M.P. Chaparro-González. 2017. Extractos de Campomanesia lineatifolia para el control del pardeamiento enzimático en papa mínimamente procesada. Cienc. Agric. 14(2), 39-48. Doi:

Parra-Coronado, A. 2014. Maduración y comportamiento poscosecha de la guayaba (Psidium guajava L.). Una revisión. Rev. Colomb. Cienc. Hortic. 8(2), 314-327. Doi:

Pech, J.C., M. Bouzayen, and A. Latche. 2008. Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. P. Sci. 175, 114-120. Doi:

Pereira, D., M. Rodrigues, J. Da Costa, R. Pires, and C. Horst. 2013. Cold storage of peaches cv. Aurora grown in the zona da Mata Mineira, Minas Gerais State, Brazil. Rev. Ceres 60(6), 833-841. Doi:

Porras, Y., M. Pedreros, W. Reyes, and H. Balaguera-López. 2020. Efecto de la luz sobre la germinación de semillas de champa (Campomanesia lineatifolia R. & P.). Cienc. Agric. 17(2), 23-31. Doi:

Razzaq, K., Z. Singh, A.S. Khan, S.A.K.U. Khan, and S. Ullah. 2016. Role of 1-MCP in regulating ‘Kensington Pride’ mango fruit softening and ripening. Plant Growth Regul. 78(3), 401-411. Doi:

Rugkong, R., R. McQuinn, J.J. Giovannoni, J.K.C. Rose, and C.B. Watkins. 2011. Expression of ripening-related genes in cold-stored tomato fruit. Postharvest Biol. Technol. 61, 1-14. Doi:

Rugkong, R., J.K.C. Rose, S.J. Lee, J.J. Giovannoni, M.A. O’Neill, and C.B. Watkins. 2010. Cell wall metabolism in cold-stored tomato fruit. Postharvest Biol. Technol. 57, 106-113. Doi:

Rupavatharam, S., A.R. East, and J.A. Heyes. 2015. Re-evaluation of harvest timing in ‘Unique’ feijoa using 1-MCP and exogenous ethylene treatments. Postharvest Biol. Technol. 99, 152-159. Doi:

Serek, M., E.J. Woltering, E.C. Sisler, S. Frello and S. Sriskandarajah. 2006. Controlling ethylene responses in flowers at the receptor level. Biotechnol. Adv. 24, 368-381. Doi:

Silva, C.A. and G.G. Fonseca. 2016. Brazilian savanna fruits: characteristics, properties and potential applications, Food Sci. Biotech. 25(5), 1225-1232. Doi:

Shi, Y., B. Wang, D. Shui, L. Cao, C. Wang, T. Yang, and H. Ye. 2014. Effect of 1-methylcyclopropene on shelf life, visual quality and nutritional quality of netted melon. Food Sci. Technol. Int. 21(3), 175-187. doi:

Singh, S. and R. Pal. 2008. Response of climacteric-type guava (Psidium guajava L.) to postharvest treatment with 1-MCP. Postharvest Biol. Technol. 47(3), 307-314. Doi:

Toivonen, P.M.A. Postharvest physiology of fruits and vegetables. pp. 49-79. In: Pareek, S. (ed.). 2016. Postharvest ripening physiology of crops. Taylor and Francis, London. Doi:

Valdenegro, M., L. Fuentes, R. Herrera, and M.A. Moya-León. 2012. Changes in antioxidant capacity during development and ripening of goldenberry (Physalis peruviana L.) fruit and in response to 1-methylcyclopropene treatment. Postharvest Biol. Technol. 67, 110-117. Doi:

Villalobos, M., W. Biasi, E. Mitcham, and D. Holcroft. 2011. Fruit temperature and ethylene modulate 1-MCP response in Bartlett pears. Postharvest Biol. Technol. 60, 17-23. Doi:

Wu, B., Q. Guo, G. Wang, X. Peng, J. Wang, and F. Che. 2015. Effects of different postharvest treatments on the physiology and quality of ‘Xiaobai’ apricots at room temperature. J. Food Sci. Technol. 52(4), 2247-2255. Doi:

Yang, X., J. Song, L. Campbell-Palmer, S. Fillmore, and Z. Zhang. 2013. Effect of ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and perception during ripening of apple fruit. Postharvest Biol. Technol. 78, 55-66. Doi:

Zhang, L., L. Jiang, Y. Shi, H. Luo, R. Kang, and Z. Yu. 2012. Post-harvest 1-methylcyclopropene and ethephon treatments differently modify protein profiles of peach fruit during ripening. Food Res. Int. 48, 609-619. Doi:

Zou, J., J. Chen, N. Tang, Y.Q. Gao, M.S. Hong, W. Wei, H.H. Cao, W. Jian, N. Li, W. Deng, and Z.G. Li. 2018. Transcriptome analysis of aroma volatile metabolism change in tomato (Solanum lycopersicum) fruit under different storage temperatures and 1-MCP treatment. Postharvest Biol. Technol. 135, 57-67. Doi:


Download data is not yet available.