Regulating the postharvest life of Campomanesia lineatifolia R. & P. fruits through the interaction of ethylene, 1-methylcyclopropene and low temperatures
Abstract
The champa (Campomanesia lineatifolia) is a very perishability berry with a pleasant taste. The objective of this research was to study the regulation and prolongation of the postharvest conservation of champa fruits using 1-methylcyclopropene (1-MCP) and refrigeration. Two experiments were carried out: In experiment 1, four treatments were evaluated to understand the regulation of maturation. The treatments were: control, 1-MCP, ethylene and 1-MCP + ethylene. The fruits were stored at room temperature. In experiment 2, the combination of the application of 1-MCP and two storage temperatures (room temperature [16±2°C] as well as 2±0.4°C) were used. In the two experiments, four repetitions were used, each one with approximately 500 g of fruits harvested at stage 2 of maturity (25% yellow and 75% green). The results of experiment 1 indicated that the fruits with 1-MCP presented the longest postharvest duration (17 days), firmness, and titratable acidity. They also had the lowest respiratory rate and weight loss during the 10 days. However, the fruits treated with ethylene had the opposite behavior, indicating that the changes evaluated during ripening were associated with this hormone. In experiment 2, the fruits refrigerated at 2°C, with or without the application of 1-MCP, had the longest postharvest duration, lasting 26 days, as compared to 12 days in the control fruits (without refrigeration and with 1-MCP). The fruits that lasted longer had a low respiratory rate during storage, as well as lower values for weight loss and, color index but, greater firmness and acidity. The 1-MCP was efficient when the fruits were at room temperature.
Keywords
Exotic fruit, Maturation, Postharvest treatments, Myrtaceae
References
Álvarez, J.G., H.E. Balaguera-López, and J.F. Cárdenas. 2009b. Caracterización fisiológica del fruto de champa (Campomanesia lineatifolia Ruiz. & Pavón), durante la poscosecha. Rev. U.D.C.A. Actual. Divulg. Cient. 12(2), 125-134. Doi: 10.31910/rudca.v12.n2.2009.698
Álvarez-Herrera, J.G., J.A. Galvis, and H.E. Balaguera. 2009a. Determinación de cambios físicos y químicos durante la maduración de frutos de champa (Campomanesia lineatifolia R. & P.). Agron. Colomb. 27, 253-259.
An, J., R.A. Almasaud, M. Bouzayen, M. Zouine, and C. Chervin. 2020. Auxin and ethylene regulation of fruit set. Plant Sci. 292, 110381. Doi: 10.1016/j.plantsci.2019.110381
Balaguera, HE., J.G. Álvarez, and D.C. Bonilla. 2009. Crecimiento y desarrollo del fruto de champa (Campomanesia lineatifolia Ruiz & Pavón). Rev. U.D.C.A. Actual. Divulg. Cient. 12(2), 113-123. Doi: 10.31910/rudca.v12.n2.2009.697
Balaguera-López, H.E., M. Espinal-Ruiz, J.M. Rodríguez-Nieto, A. Herrera-Arévalo, and L. Zacarías. 2021. 1-Methylcyclopropene inhibits ethylene perception and biosynthesis: a theoretical and experimental study on cape gooseberry (Physalis peruviana L.) fruits. Postharvest Biol. Technol. 174, 111467. Doi: 10.1016/j.postharvbio.2021.111467
Balaguera-López, H.E. and A. Herrera. 2012a. Estudio de algunos cambios bioquímicos durante el crecimiento y hasta la cosecha del fruto de champa (Campomanesia lineatifolia R. & P. Familia Myrtaceae). Rev. Bras. Frutic. 34(2), 460-468. Doi: 10.1590/S0100-29452012000200019
Balaguera-López, H.E. and A. Herrera. 2012b. Determining optimal harvest point for champa (Campomanesia lineatifolia R. & P.) fruit based on skin color. Ing. Investig. 32(1), 88-93.
Balaguera-López, H.E., C.A. Martínez, and A. Herrera. 2015. Refrigeration affects the postharvest behavior of 1-methylcyclopropenetreated cape gooseberry (Physalis peruviana L.) fruits with the calyx. Agron. Colomb. 33(3), 356-364. Doi: 10.15446/agron.colomb.v33n3.51896
Bapat, V.A., P.K. Trivedi, A. Ghosh, V.A. Sane, T.R. Ganapathi, and P. Nath. 2010. Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnol. Adv. 28, 94-107. Doi: 10.1016/j.biotechadv.2009.10.002
Barreto, C.F., R.R. Zandoná, G. Acorsi, A. Copatti, and J. Saavedra. 2017. Efeito do 1-Metilciclopropeno na qualidade pós-colheita de pessegos ‘Chiripá’. Rev. Iberoam. Tecnol. Postcos. 18(1), 33-38.
Binder, B. 2008. The ethylene receptors: complex perception for a simple gas. Plant Sci. 175, 8-17. Doi: 10.1016/j.plantsci.2007.12.001
Brasil, I. and M.W. Siddiqui. 2018. Postharvest quality of fruits and vegetables: An Overview. pp. 1-40. In: Siddiqui, M.W. (ed). Preharvest modulation of postharvest fruit and vegetable quality. Academic Press, London.
Carrillo, M.P., M.S. Hernández, J. Barrera, O. Martínez, and J.P. Fernández-Trujillo. 2011. 1-Methylcyclopropene delays arazá ripening and improves postharvest fruit quality. LWT - Food Sci. Technol. 44, 250-255. Doi: 10.1016/j.lwt.2010.05.029
Cerqueira, T., A. Jacomino, F. Sasaki, and L. Amorim. 2009. Controle do amadurecimento de goiabas ‘Kumagai’ tratadas com 1-metilciclopropeno. Rev. Bras. Frutic. 31(3), 687-692. Doi: 10.1590/S0100-29452009000300010
Cheng, Y., L. Liu, Y. Feng, Y. Dong, and J. Guan. 2019. Effects of 1-MCP on fruit quality and core browning in ‘Yali’ pear during cold storage. Sci. Hortic. 243, 350-356. Doi: 10.1016/j.scienta.2018.08.041
Daulagala, C.H. and W.A.M. Daundasekera. 2015. Effect of 1-methylcyclopropene (1-MCP) treatment on postharvest quality and antifungal activity of avocado cv. ‘pollock’ under tropical storage conditions. Ceylon J. Sci. (Bio. Sci.) 44(2), 75-83. Doi: 10.4038/cjsbs.v44i2.7352
Getinet, H., T. Seyoum, and K. Woldetsadik. 2008. Effect of cultivar, maturity stage and storage environment on quality of tomatoes. J. Food Eng. 87, 467-478. Doi: 10.1016/j.jfoodeng.2007.12.031
In, B.C., J. Strablea, B.M. Binder, T.G. Falbel, and S.E. Patterson. 2013. Morphological and molecular characterization of ethylene binding inhibition in carnations. Postharvest Biol. Technol. 86, 272-279. Doi: 10.1016/j.postharvbio.2013.07.007
Kays, S. (ed.). 2004. Postharvest biology. Exon Press, Athens, GA.
Lado, J., O. Cronje, M.J. Rodrigo, and L. Zacarías. 2015. Resistance to chilling injury in red, lycopene-accumulating tissue of cold-stored grapefruits. Acta Hortic. 1079, 249-256. Doi: 10.17660/ActaHortic.2015.1079.29
Lata, D., V.S. Kuchi, and G.A. Nayik. 2017. 1-methylcyclopropene (1-MCP) for quality preservation of fresh fruits and vegetables. J. Postharvest Technol. 5(3), 9-15.
Lelievre, J.M., L. Tichit, P. Dao, L. Fillion, Y.W. Nam, J.C. Pech, and A. Latche. 1997. Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L.) fruits. Plant Mol. Biol. 33, 847-855. Doi: 10.1111/j.1399-3054.1997.tb01057.x
Mariño-González, L., C. Buitrago, H. Balaguera-López, and E. Martínez-Quintero. 2019. Effect of 1-methylcyclopropene and ethylene on the physiology of peach fruits (Prunus persica L.) cv. Dorado during storage. Rev. Colomb. Cienc. Hortic. 13(1), 46-54. Doi: 10.17584/rcch.2019v13i1.8543
Mir, N.A., E. Curell, N. Khan, M. Whitaker, and R.M. Beaudry. 2001. Harvest maturity, storage temperature, and 1-MCP application frequency alter firmness retention and chlorophyll fluorescence of ‘Redchief Delicious’ apples. J. Am. Soc. Hortic. Sci. 126, 618-624. Doi: 10.21273/JASHS.126.5.618
Muños, C.W., R.W. Chávez, L.C. Pabón, F.M.R. Rendón, M.P. Chaparro, and A.M. Otálvaro-Álvarez. 2015. Extracción de compuestos fenólicos con actividad antioxidante a partir de champa (Campomanesia lineatifolia). Rev. CENIC Cienc. Quim. 46, 38-46.
Nishiyama, K., M. Guis, J.K.C. Rose, Y. Kubo, K.A. Bennett, and L. Wangjin. 2007. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J. Exp. Bot. 58, 1281-1290. Doi: 10.1093/jxb/erl283
Obenland, D., S. Collin, J. Sievert, and M.L. Arpaia. 2013. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature. Postharvest Biol. Technol. 82, 6-14. Doi: 10.1016/j.postharvbio.2013.02.013
Otálvaro-Álvarez, A.M., L.C. Pabón-Baquero, M.R. Rendón-Fernández, and M.P. Chaparro-González. 2017. Extractos de Campomanesia lineatifolia para el control del pardeamiento enzimático en papa mínimamente procesada. Cienc. Agric. 14(2), 39-48. Doi: 10.19053/01228420.v14.n2.2017.7147
Parra-Coronado, A. 2014. Maduración y comportamiento poscosecha de la guayaba (Psidium guajava L.). Una revisión. Rev. Colomb. Cienc. Hortic. 8(2), 314-327. Doi: 10.17584/rcch.2014v8i2.3223
Pech, J.C., M. Bouzayen, and A. Latche. 2008. Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 175, 114-120. Doi: 10.1016/j.plantsci.2008.01.003
Pereira, D., M. Rodrigues, J. Da Costa, R. Pires, and C. Horst. 2013. Cold storage of peaches cv. Aurora grown in the zona da Mata Mineira, Minas Gerais State, Brazil. Rev. Ceres 60(6), 833-841. Doi: 10.1590/S0034-737X2013000600012
Porras, Y., M. Pedreros, W. Reyes, and H. Balaguera-López. 2020. Efecto de la luz sobre la germinación de semillas de champa (Campomanesia lineatifolia R. & P.). Cienc. Agric. 17(2), 23-31. Doi: 10.19053/01228420.v17.n2.2020.10979
Razzaq, K., Z. Singh, A.S. Khan, S.A.K.U. Khan, and S. Ullah. 2016. Role of 1-MCP in regulating ‘Kensington Pride’ mango fruit softening and ripening. Plant Growth Regul. 78(3), 401-411. Doi: 10.1007/s10725-015-0101-7
Rugkong, R., R. McQuinn, J.J. Giovannoni, J.K.C. Rose, and C.B. Watkins. 2011. Expression of ripening-related genes in cold-stored tomato fruit. Postharvest Biol. Technol. 61, 1-14. Doi: 10.1016/j.postharvbio.2011.02.009
Rugkong, R., J.K.C. Rose, S.J. Lee, J.J. Giovannoni, M.A. O’Neill, and C.B. Watkins. 2010. Cell wall metabolism in cold-stored tomato fruit. Postharvest Biol. Technol. 57, 106-113. Doi: 10.1016/j.postharvbio.2010.03.004
Rupavatharam, S., A.R. East, and J.A. Heyes. 2015. Re-evaluation of harvest timing in ‘Unique’ feijoa using 1-MCP and exogenous ethylene treatments. Postharvest Biol. Technol. 99, 152-159. Doi: 10.1016/j.postharvbio.2014.08.011
Serek, M., E.J. Woltering, E.C. Sisler, S. Frello, and S. Sriskandarajah. 2006. Controlling ethylene responses in flowers at the receptor level. Biotechnol. Adv. 24, 368-381. Doi: 10.1016/j.biotechadv.2006.01.007
Silva, C.A. and G.G. Fonseca. 2016. Brazilian savanna fruits: characteristics, properties and potential applications. Food Sci. Biotech. 25(5), 1225-1232. Doi: 10.1007/s10068-016-0195-3
Shi, Y., B. Wang, D. Shui, L. Cao, C. Wang, T. Yang, and H. Ye. 2014. Effect of 1-methylcyclopropene on shelf life, visual quality and nutritional quality of netted melon. Food Sci. Technol. Int. 21(3), 175-187. doi: 10.1177/1082013214520786
Singh, S. and R. Pal. 2008. Response of climacteric-type guava (Psidium guajava L.) to postharvest treatment with 1-MCP. Postharvest Biol. Technol. 47(3), 307-314. Doi: 10.1016/j.postharvbio.2007.08.010
Toivonen, P.M.A. 2016. Postharvest physiology of fruits and vegetables. pp. 49-79. In: Pareek, S. (ed.). Postharvest ripening physiology of crops. Taylor and Francis, London. Doi: 10.1201/b19043
Valdenegro, M., L. Fuentes, R. Herrera, and M.A. Moya-León. 2012. Changes in antioxidant capacity during development and ripening of goldenberry (Physalis peruviana L.) fruit and in response to 1-methylcyclopropene treatment. Postharvest Biol. Technol. 67, 110-117. Doi: 10.1016/j.postharvbio.2011.12.021
Villalobos, M., W. Biasi, E. Mitcham, and D. Holcroft. 2011. Fruit temperature and ethylene modulate 1-MCP response in Bartlett pears. Postharvest Biol. Technol. 60, 17-23. Doi: 10.1016/j.postharvbio.2010.11.005
Wu, B., Q. Guo, G. Wang, X. Peng, J. Wang, and F. Che. 2015. Effects of different postharvest treatments on the physiology and quality of ‘Xiaobai’ apricots at room temperature. J. Food Sci. Technol. 52(4), 2247-2255. Doi: 10.1007/s13197-014-1288-8
Yang, X., J. Song, L. Campbell-Palmer, S. Fillmore, and Z. Zhang. 2013. Effect of ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and perception during ripening of apple fruit. Postharvest Biol. Technol. 78, 55-66. Doi: 10.1016/j.postharvbio.2012.11.012
Zhang, L., L. Jiang, Y. Shi, H. Luo, R. Kang, and Z. Yu. 2012. Post-harvest 1-methylcyclopropene and ethephon treatments differently modify protein profiles of peach fruit during ripening. Food Res. Int. 48, 609-619. Doi: 10.1016/j.foodres.2012.05.022
Zou, J., J. Chen, N. Tang, Y.Q. Gao, M.S. Hong, W. Wei, H.H. Cao, W. Jian, N. Li, W. Deng, and Z.G. Li. 2018. Transcriptome analysis of aroma volatile metabolism change in tomato (Solanum lycopersicum) fruit under different storage temperatures and 1-MCP treatment. Postharvest Biol. Technol. 135, 57-67. Doi: 10.1016/j.postharvbio.2017.08.017