Skip to main navigation menu Skip to main content Skip to site footer

Morphological responses of Andean blueberry (Vaccinium meridionale Swartz) plants growing in three environments at different altitudes

The Andean blueberry plants growing in the Department of Santander (Colombia). Photo: S. Magnitskiy

Abstract

The Andean blueberry (Vaccinium meridionale Swartz) is a promising fruit crop that has gained importance in the market because of its nutritional and medicinal properties; however, there are few studies on the optimal conditions for growth and production. In this study, the vegetative growth of Andean blueberry plants was evaluated for 200 days in three sites at different altitudes in the Department of Cundinamarca (Colombia): municipality of San Francisco (1,885 m a.s.l.), Bogota (Universidad Nacional de Colombia - UNAL, 2,556 m a.s.l.), and Cruz Verde páramo (3,298 m a.s.l.). For the evaluation, 2-year-old plants were used that were propagated in vitro. The experiment had a repeated measures design, with 3 treatments (locations) and 5 data collection times, with destructive measurements at the beginning and at the end of the trial. Data for leaf area per plant, plant height, stem width, number of primary branches, branch length, and chlorophyll contents in leaves were taken. The tallest plants, with the largest leaf area and most dry matter, were found at the UNAL (2,556 m a.s.l.). Morphological and physiological variations were observed in response to each of the environments, with correlations between the growth variables and the environmental variables. The highest percentage distribution of dry matter in leaves was in the plants from the Cruz Verde páramo (3,298 m a.s.l.), while the percentage distribution of dry weight in the stem was higher in the plants from San Francisco (1,885 m a.s.l.). The percentage distribution of root dry weight was greater in the plants from San Francisco than those from other locations. The results indicated that the Andean blueberry plants had the most suitable conditions for vegetative growth at altitudes close to 2,556 m a.s.l.

Keywords

Ecophysiology, Altitudinal gradient, Phenotypic plasticity, Andean species, Ericaceae

PDF

References

  • +Ávila R., H., J. Cuspoca R., G. Fischer, G. Ligarreto, and M. Quicazán. 2007. Caracterización fisicoquímica y organoléptica del fruto de agraz (Vaccinium meridionale Swartz) almacenado a 2°C. Rev. Fac. Nac. Agron. Medellín 60(2), 4179-4193.
  • Baizan, S. 2013. Determinación de la composición fenólica y actividad antioxidante en brotes de clones de Pinus pinaster procedentes de tres orígenes contrastantes. PhD tesis. Department of Sciences, Universidad de Oviedo, Asturias, Spain.
  • Beccaro, G., M.G. Mellano, R. Botta, V. Chiabrando, and G. Bounous. 2006. Phenolic and anthocyanin content and antioxidant activity in fruits of bilberry (Vaccinium myrtillus L.) and of highbush blueberry (V. corymbosum L.) cultivars in North Western Italy. Acta Hortic. 715(1991), 553-557. Doi: https://doi.org/10.17660/ActaHortic.2006.715.85
  • Berlia, F.J., Alonsoa, R., Bressan-Smithb, R., and R. en Bottinia. 2013. UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiol. Plant. 149, 127-140. Doi: https://doi.org/10.1111/ppl.12012
  • Çelik, H., M. Özgen, S. Serçe, and C. Kaya. 2008. Phytochemical accumulation and antioxidant capacity at four maturity stages of cranberry fruit. Sci. Hortic. 117(4), 345-348. Doi: https://doi.org/10.1016/j.scienta.2008.05.005
  • Derebe, A.D., Roro, A.G., Asfaw, B.T., Ayele, W.W., and A.K. Hvoslef-Eide. 2019. Effects of solar UV-B radiation exclusion on physiology, growth and yields of taro (Colocasia esculenta (L.)) at different altitudes in tropical environments of Southern Ethiopia. Scient. Horticult. 256, 108563. Doi: https://doi.org/10.1016/j.scienta.2019.108563
  • Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2). https://doi.org/10.15446/agron.colomb.v40n2.101854
  • García M., C.L. and G.A. Ligarreto M. 2014. Efecto del tamaño del fruto sobre el crecimiento y desarrollo de plántulas de agraz (Vaccinium meridionale Swartz) en cuatro localidades de los Andes de Colombia. Agron. Colomb. 32(1), 14-21. Doi: https://doi.org/10.15446/agron.colomb.v32n1.38714
  • Garzón, G.A., C.Y. Soto, M. López-R, K.M. Riedl, C.R. Browmiller, and L. Howard. 2020. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale Swartz pomace. Heliyon 6(5), e03845. Doi: https://doi.org/10.1016/j.heliyon.2020.e03845
  • Gaviria, C.A., C.I. Ochoa, N.Y. Sánchez, C.I. Medina, M. Lobo, P.L. Galeano, A.J. Mosquera, A. Tamayo, Y.E. Lopera, and B.A. Rojano. 2009. Propiedades antioxidantes de los frutos de agraz o mortiño (Vaccinium meridionale Swartz). pp. 93-112. In: Ligarreto, G. (ed.). Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia. Universidad Nacional de Colombia, Bogota.
  • Han, G.D., S. Heo, J.M. Chio, and Y.S. Chung. 2022. SPAD: potential phenotyping method for characterization of blueberry. PLoS ONE 17(8), e0273845. Doi: https://doi.org/10.1371/journal. pone.0273845
  • Karppinen, K., L. Zoratti, N. Nguyenquynh, H. Häggman, and L. Jaakola. 2016. On the developmental and environmental regulation of secondary metabolism in vaccinium spp. berries. Front. Plant Sci. 7, 655. Doi: https://doi.org/10.3389/fpls.2016.00655
  • Kawamura, K. and H. Takeada. 2004. Rules of crown development in the clonal shrub Vaccinium hirtum in a low-light understory: A quantitative analysis of architecture. Can. J. Bot. 82, 329-339. Doi: https://doi.org/10.1139/b04-001
  • Kim, S., D. Yua, T. Kim, and H. Lee. 2011. Growth and photosynthetic characteristics of blueberry (Vaccinium corymbosum cv. Bluecrop) under various shade levels. Sci. Hortic. 129(3), 486-492. Doi: https://doi.org/10.1016/j.scienta.2011.04.022
  • Lancheros R., H. 2012. Caracterización de las micorrizas nativas en agraz Vaccinium meridionale Swartz y evaluación de su efecto sobre el crecimiento plantular. MSc thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota.
  • Ligarreto, G. (ed.). 2009. Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia. Universidad Nacional de Colombia, Bogota.
  • Ligarreto, G. 2011. Agraz (Vaccinium meridionale Swartz). pp. 1-23. In: Algunas prácticas de cultivo y poscosecha. Universidad Nacional de Colombia, Bogota.
  • Magnitskiy, S. and G. Ligarreto. 2009. Plantas de agraz o mortiño (Vaccinium meridionale Swartz): potencial de propagación sexual. pp. 75-91. In: Ligarreto, G. (ed.). Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia. Universidad Nacional de Colombia, Bogota.
  • Marín-Echeverri, C., C.N. Blesso, M.L. Fernandez, Y. Galvis-Pérez, G. Ciro-Gómez, V. Núñez-Rangel, and J. Barona-Acevedo. 2018. Effect of agraz (Vaccinium meridionale Swartz) on high-density lipoprotein function and inflammation in women with metabolic syndrome. Antioxidants 7(12), 185. Doi: https://doi.org/10.3390/antiox7120185
  • Medina, C.I., M. Lobo, A.A. Castaño, and L.E. Cardona. 2015. Análisis del desarrollo de plantas de mortiño (Vaccinium meridionale Swart.) bajo dos sistemas de propagación: clonal y sexual. Corpoica Ciencia Tecnol. Agropec. 16(1), 65-77. Doi: https://doi.org/10.21930/rcta.vol16_num1_art:390
  • Muraoka, H. and H. Koizumi. 2005. Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: Implications to the ecosystem carbon again. Agric. For. Meteorol. 134, 39-59. Doi: https://doi.org/10.1016/j.agrformet.2005.08.013
  • Petridis, A., J. van der Kaay, I.W. Archibald, S. McCallum, J. Graham, and R.D. Hancock. 2021. Reflective mulch increases fruit yield of highbush blueberry (Vaccinium corymbosum L. cv. Darrow) grown in a northern maritime environment while maintaining key fruit quality traits. J. Sci. Food Agricult. 101(8), 3376-3385. Doi: https://doi.org/10.1002/jsfa.10967
  • Qian, M., E. Rosenqvist, A.M. Flygare, I. Kalbina, Y. Teng, M.A. Jansen, and Å. Strid. 2020. UV-A light induces a robust and dwarfed phenotype in cucumber plants (Cucumis sativus L.) without affecting fruit yield. Sci. Hortic. 263, 109110. Doi: https://doi.org/10.1016/j.scienta.2019.109110
  • Quevedo-Rubiano, S., Y. Aranda-Camacho, G.A. Ligarreto-Moreno, and S. Magnitskiy. 2021. Characterization of the localized agri-food system (SYAL) for the Andean blueberry (Vaccinium meridionale Swartz) in the Boyaca Department, Colombia. Rev. Colomb. Cienc. Hortic. 15(1), e11593. Doi: https://doi.org/10.17584/rcch.2021v15i1.11593
  • Rada, F. and Y. Cáceres. 2011. How does the woody species Vaccinium meridionale respond to temperature in its altitudinal limit of distribution in the Tropical Andes? Ecotrópicos 24(1), 80-91.
  • Retamal, J.A. 2014. Influencia de las condiciones microclimáticas bajo túnel alto sobre respuestas fisiológicas y productivas en arándano (Vaccinium corymbosum L.), PhD thesis. Department of Agronomy, Universidad de Concepción, Concepcion, Chile.
  • Retamal-Salgado, J., B. Loor, J. Hirzel, M.D. López, P. Undurraga, N. Zapata, R. Vergara-Retamales, and H. Olivares-Soto. 2022. Chlorophyll fluorescence and fruit quality response of blueberry to different mulches. Agronomy 12, 1702. Doi: https://doi.org/10.3390/agronomy12071702
  • Rodríguez-Castillo, N. and L. Melgarejo. 2015. Caracterización ecofisiológica de la granadilla (Passiflora ligularis Juss) bajo dos condiciones ambientales en el departamento del Huila. Universidad Nacional de Colombia; Colciencias; Corporación Centro de Desarrollo Tecnológico de las Pasifloras de Colombia (CEPASS), Bogota.
  • Ryan, J.A. and J.M. Ulrich. 2012. Xts: eXtensible time series. R package version 0.8-6. URL http://CRAN.R-project.org/package=xts
  • Torres, W., I. Montoya, and G. Ligarreto. 2009. Aspectos sociales y económicos de la producción de agraz o mortiño (Vaccinium meridionale Swartz). pp. 113-134. In: Ligarreto, G. (ed.). Perspectivas del cultivo de agraz o mortiño en la zona altoandina de Colombia. Universidad Nacional de Colombia, Bogota.
  • Torres, W., W. Rubio, and G. Ligarreto. 2012. Agraz o mortiño (Vaccinium meridionale Swartz.). pp. 905-914. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  • Valledor, L. M.J. Cañal, J. Pascual, R. Rodrígez, and M. Meijón. 2012. Early induced protein 1(PrELIP1) and other photosynthetic, stress and epigenetic regulation genes are involved in Pinus radiate D. don UV-B radiation response. Physiol. Plant. (147), 407-407. Doi: https://doi.org/10.1111/j.1399-3054.2012.01629.x
  • Vaneková, Z., M. Vanek, J. Škvarenina, and M. Nagy. 2020. The influence of local habitat and microclimate on the levels of secondary metabolites in Slovak bilberry (Vaccinium myrtillus L.) fruits. Plants 9(4), 436. Doi: https://doi.org/10.3390/plants9040436
  • Wang, L., S. Shang, J. Wua, H. Dua, S. Li, J. Huo, Y. Zhang, and L. Wanga. 2014. Variation of anthocyanins and flavonols in Vaccinium uliginosum berry in Lesser Khingan Mountains and its antioxidant activity. Food Chem. 160, 357-364. Doi: https://doi.org/10.1016/j.foodchem.2014.03.081
  • Zoratti, L., L. Jaakola, H. Häggman, and L. Giongo. 2015. Anthocyanin profile in berries of wild and cultivated Vaccinium spp. along altitudinal gradients in the Alps. J. Agric. Food Chem. 63(39), 8641-8650.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.