Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Estimación de la concentración de clorofila mediante métodos no destructivos en vid (Vitis vinifera L.) cv. Riesling Becker

Resumen

El análisis de pigmentos en plantas es un procedimiento de laboratorio y comúnmente no es una medida inmediata que se realice in situ. El SPAD 502 y CCM-200 son equipos para estimar de modo indirecto, no destructivo y rápido el contenido de clorofila. La concentración de pigmentos fotosintéticos se relaciona con la concentración foliar de nitrógeno, por lo que de forma indirecta se puede conocer la deficiencia o exceso del elemento, puede servir como fundamento técnico para sugerir el manejo adecuado del cultivo, en busca de potencializar la eficiencia fotosintética, calidad y el rendimiento de un viñedo. La investigación buscó comparar las mediciones entre el medidor portátil de clorofila SPAD-502 y CCM-200, en la variedad de uva Riesling Becker, bajo condiciones de clima frío tropical, y con ello determinar el comportamiento de clorofila durante el crecimiento de las hojas 4, 5 y 6, desde floración hasta vendimia. La relación entre las mediciones con el SPAD- 502 y el CCM-200 se ajustaron a un polinomio de segundo grado determinado por la ecuación, para el Índice de Concentración de Clorofila, como ICC = 0,014SPAD2-0,2396SPAD+5,8021. Con un valor de R2=0,9343 (n=96; P≤0,0001), el cual indica que existe una alta correlación entre los equipos portátiles empleados en el presente estudio para determinar la clorofila de forma no destructiva. Las evaluaciones realizadas con los equipos permitieron obtener medidas rápidas y confiables. Siendo importante la elección del momento de medición de acuerdo con el estadio fenológico de la planta debido a la alta variabilidad en los contenidos de clorofila que se presentan en relación a la filotaxia.

Palabras clave

Pigmentos, Medidor portátil, CCM-200, SPAD 502, Métodos no destructivos, Viñedos tropicales, Indicadores diagnósticos

PDF

Referencias

  • Agronet. 2018. Análisis –Estadísticas, cultivo de Uva Colombia. En: Ministerio de Agricultura y Desarrollo Rural de Colombia, http://www.agronet.gov.co; consulta: junio de 2018.
  • Alizadeh, M., S.K. Singh., V.B Patel., R.C. Bhattacharya y B.P. Yadav. 2010. In vitro responses of grape rootstocks to NaCl. Biol. Plant. 54, 381-385. Doi: 10.1007/s10535-010-0069-0
  • Allen, F., T. Center y E. Mattison. 2012. In situ estimates of water hyacinth leaf tissue nitrogen using a SPAD-502 chlorophyll meter. Aquat. Bot. 100, 72-75. Doi: 10.1016/j.aquabot.2012.03.005
  • Almanza-Merchán, P. 2011. Determinación del crecimiento y desarrollo del fruto de vid (Vitis vinífera L.) bajo condiciones de clima frío tropical. Tesis de doctorado. Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá.
  • Almanza-Merchán, P., S. González-Merchán y H.E. Balaguera-López. 2012a. La posición de la hoja y su efecto sobre la calidad y producción de frutos de vid (Vitis vinifera L.) var. Riesling × Silvaner. Rev. Colomb. Cienc. Hortic. 6(1), 9-18. Doi: 10.17584/rcch.2012v6i1.1283
  • Almanza-Merchan, P., P. Serrano y G. Fischer. 2012b, Manual de viticultura tropical. Colombia. Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
  • Arregui, L., M. Merina y A. Mingo. 2000. Aplicación del medidor portátil en los programas de fertilización nitrogenada en patata. pp. 157-170. En: Memorias Congreso Iberoamericano de Investigación y Desarrollo en Patata. Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, España.
  • Bertamini, M. y N. Nedunchezhian. 2003. Photosynthetic functioning of individual grapevine leaves (Vitis vinifera L. cv. Pinot noir) during ontogeny in the field. Vitis 42(1), 13-17.
  • Borhan, M.S., S. Panigrahi, M. Satter y H. Gu. 2017, Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Inf. Process. Agr. 4(4), 275-282. Doi: 10.1016/j.inpa.2017.07.005
  • Callejas, R., E. Kania, A. Contreras, C. Peppi y L. Morales. 2013. Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia 31(4), 19-26. Doi: 10.4067/S0718-34292013000400003
  • Candolfi-Vasconcelos, M. y W. Koblet. 1991. Influence of partial defoliation on gas exchange parameters and chlorophyll content on field grown grapevines mechanisms and limitations of the compensation capacity. Vitis 30, 129-141.
  • Cao, Q., Y. Miao, G. Feng, X. Gao, F. Li, B. Liu, S. Yue, S. Cheng, S. Ustin y R. Khosla. 2015. Active canopy sensing of winter wheat nitrogen status: an evaluation of two sensor systems. Comp. Elect. Agric. 112, 54-67. Doi: 10.1016/j.compag.2014.08.012
  • Cate, T. y T. Perkins. 2003. Chlorophyll content monitoring in sugar maple (Acer saccharum). Tree Physiol. 23, 1077-1079. Doi: 10.1093/treephys/23.15.1077
  • Chang, S. y D. Robinson. 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. Forest Ecol. Manage. 181(3), 331-338. Doi: 10.1016/S0378-1127(03)00004-5
  • Cho, Y.Y., S. Oh, M.M. Oh y J.E. Son. 2007. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci. Hort. 111(4), 330-334. Doi: 10.1016/j.scienta.2006.12.028
  • Delegido, J., L. Alonso, G. González y J. Moreno. 2010. Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int. J. Appl. Earth Obs. Geoinf. 12(3), 165-174. Doi: 10.1016/j.jag.2010.02.003
  • Do Amarante, C., O. Zanuzo, A. Miqueloto, C. Steffens, J. Erhart y J. De Almeida. 2009. Quantificação da área e do teor de clorofilas emfolhas de plantas jovens de videira ‘cabernet sauvignon’ mediante métodos nãodestrutivos. Rev. Bras. Frutic. 31(3), 680-686. Doi: 10.1590/S0100-29452009000300009
  • Elarab, M., A. Ticlavilca., A. Torres-Rua., I. Maslova y M. McKee. 2015. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 43, 32-42. Doi: 10.1016/j.jag.2015.03.017
  • Fanizza, G., L. Ricciardi y C. Bagnulo. 1991. Leaf greenness measurements to evaluate water stressed genotypes in Vitis vinifera. Euphytica 55(1), 27-31. Doi: 10.1007/BF00022556
  • Hawkins, T., E. Gardiner y G. Comer. 2009. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. J. Nat. Conserv. 17(2), 123-127. Doi: 10.1016/j.jnc.2008.12.007
  • Hunter, J. y J. Visser. 1989. The effect of partial defoliation, leaf position and developmental stage of the vine on leaf chlorophyll concentration in relation to the photosynthetic activity and light intensity in the canopy of Vitis vinifera L. cv. Cabernet Sauvignon. S. Afr. J. Enol. Vitic. 10, 67-73. Doi: 10.21548/10-2-2289
  • Iacono, F., M. Bertamini, A. Scienza y B. Coombe. 1995. Differential effects of canopy manipulation and shading of Vitis vinifera L. cv. Cabernet Sauvignon. leaf gas exchange, photosynthetic electron transport rate and sugar accumulation in berries. Vitis 34(4), 201-206.
  • Kapotis, G., G. Zervoudakis, T. Veltsistas y G. Salahas. 2003. Comparaison of chlorophyll meter readings with leaf chlorophyll concentration in Amaranthus vlitus: correlation with physiological processes. Russ. J. Plant Physiol. 50(3), 395-397. Doi: 10.1023/A:1023886623645
  • Lorenz, D.H., K.W. Eichhorn H. Blei-Holder R. Klose, U. Meier y E. Weber. 1994. Phänologische entwicklungsstadien der weinrebe (Vitis vinifera L. ssp. vinifera). Vitic. Enol. Sci. 49, 66-70. Doi: 10.1111/j.1755-0238.1995.tb00085.x
  • Novoa, R. y A. Villagran. 2002. Evaluación de un instrumento medidor de clorofila en la determinación de niveles de nitrógeno foliar en maíz. Agric. Téc. 62(1), 165-171. Doi: 10.4067/S0365-28072002000100017
  • Ocon, P. 2008. Utilización del clorofilometro SPAD 502 para diagnosticar la deficiencia de nitrógeno en sorgo (Sorgum bicolor [L.] Moench) bajo distintas dosis de nitrógeno. Trabajo de grado. Facultad de Agronomía, Universidad Nacional Agraria, Managua.
  • Pinzón-Sandoval, E., I. Arias-Burgos y G. Cely-Reyes. 2017. Dinámica del crecimiento del fruto de vid (Vitis vinífera L.) cv ‘Sauvignon’ en trópico alto Colombiano. Cult. Cient. 15, 106-115.
  • Quijano, M. 2004. Ecología de una conexión solar. De la adoración del sol al desarrollo vitivinícola regional. Cult. Cient. 2, 5-9.
  • Ramírez, V., A. Moreno y J. López. 2012. Evaluación temprana de la deficiencia del nitrógeno en café y aplicaciones. Avances Técnicos Cenicafe 420, 1-8
  • Reyes, J., C. Correa y J. Zúñiga. 2017. Reliability of different color spaces to estimate nitrogen SPAD values in maize. Comp. Elect. Agric. 143, 14-22. Doi: 10.1016/j.compag.2017.09.032
  • Richardson, A., S. Duigan y G. Berlyn. 2002. Evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 153, 185-194. Doi: 10.1046/j.0028-646X.2001.00289.x
  • Rincón, A. y G. Ligarreto. 2010. Relación entre nitrógeno foliar y el contenido de clorofila, en maíz asociado con pastos en el piedemonte llanero colombiano. Corpoica Cienc. Tecnol. Agropecu. 11(2), 122-128. Doi: 10.21930/rcta.vol11_num2_art:202
  • Rodríguez, M., G. Alcántar, A. Aguilar, J. Etchevers y J. Zantizó. 1998. Estimación de la concentración de nitrógeno y clorofila en tomate mediante un medidor portátil de clorofila. Terra Latinoam. 16(2), 135-141.
  • Romano, G., S. Zia, W. Spreer, C. Sanchez, J. Cairns, J. Araus y J. Müller. 2011. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Comp. Elect. Agric. 79, 67-74, Doi: 10.1016/j.compag.2011.08.011
  • Rosolem, C. y V. Van Mellis. 2010. Monitoring nitrogen nutrition in cotton. Rev. Bras. Ciênc. Solo 34(5), 1601-1607. Doi: 10.1590/S0100-06832010000500013
  • Sainz, H. y H. Echeverria. 1998. Relación entre las lecturas del medidor de clorofila (Minolta SPAD 502) en distintos estadios del ciclo del cultivo de maíz y el rendimiento en grano. Rev. Fac. Nac. Agron. Medellín 103(1), 37-44.
  • Salisbury, F. y C. Ross. 1992. Fisiología vegetal. Editorial Iberoamerica, México DF.
  • Senger, E., A. Peyrat., M. Martin y J. Montes. 2014. Genetic variation in leaf chlorophyll content of Jatropha curcas L. Ind. Crops Prod. 58, 204-211. Doi: 10.1016/j.indcrop.2014.04.003
  • Steele, M., A. Gitelson y D. Rundquist. 2007. A comparaison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron. J. 100(3), 779-782. Doi: 10.2134/agronj2007.0254N
  • Walteros, I.Y., D.C. Molano, P.J. Almanza-Merchán, M. Camacho y H.E. Balaguera-López. 2012. Efecto de la poda sobre la producción y calidad de frutos de Vitis vinifera L. var. Cabernet Sauvignon en Sutamarchán (Boyacá, Colombia). Rev. Colomb. Cienc. Hortic. 6(1), 19-30. Doi: 10.17584/rcch.2012v6i1.1279
  • Wang, H.-F., Z.-G. Huo, G.-S. Zhou, Q.-H. Liao, H.-K. Feng y L. Wu. 2016. Estimating leaf SPAD values of freeze-damaged winter wheat using continuous wavelet analysis. Plant Physiol. Biochem. 98, 39-45. Doi: 10.1016/j.plaphy.2015.10.032
  • Zulini, L., M. Rubinigg, R. Zorer y M. Bertamini. 2007. Effects of drought stress on chlorophyll fluorescente and photosynthetic pigment in grapevine leaves (Vitis vinifera cv. “White Riesling”). Acta Hortic. 754, 289-294. Doi: 10.17660/ActaHortic.2007.754.37

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

1 2 > >>