Effect of inoculation with Acaulospora and Glomus on the growth and nutrition of blueberries (Vaccinium corymbosum) with different fertilization levels

Efecto de la inoculación con Acaulospora and Glomus sobre el crecimiento y nutrición de arándanos (Vaccinium corymbosum) con diferentes niveles de fertilización

Main Article Content

Gabriel Roveda-Hoyos
Julián Felipe Venegas-Gómez
Liz Patricia Moreno-Fonseca
Stanislav Magnitskiy
Margarita Ramírez-Gómez


In recent years, the global demand for blueberries has been growing because of its nutraceutical properties in the fruits, which provide important benefits to human health. Colombia, thanks to its diversity, has a great opportunity to meet the blueberry demands of the global markets. In the present study, the effect of two arbuscular mycorrhizal fungi (AMF) of the genera Glomus and Acaulospora were evaluated on the growth of blueberry plants var. Biloxi, subjected to three levels of chemical fertilization (100, 50 and 0%), with the 100% level being optimal. The blueberry plants inoculated with Glomus under conditions of nutrient deficiency (50AMF1+) increased dry mass, height, number of basal branches, leaf area, root/shoot ratio, and chlorophyll concentration, which were significantly higher than in the plants without inoculation with nutrient deficiency (0AMF- and 50AMF-). The plants inoculated with Glomus achieved an increase in height, while the plants inoculated with Acaulospora increased the number of basal branches when grown under a nutrient deficiency (50AMF+1) in relation to the uninoculated controls (0AMF- and 50AMF-). The results suggested that the best association of blueberry occurs with Glomus, with increased plant growth and nutrition (N, P, K, Ca, Mg, and S).



Download data is not yet available.

Article Details

References (SEE)

Abdel-Fattah, G.M., A.-W.A. Asrar, S.M. Al-Amri, and E.M. Absel-Salam. 2014. Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange status, growth and nutrient contents of soybean (Glycine max L.) plants grown in a sandy loam soil. J. Fruit Agric. Environ. 12(1), 150-156.

Aguilera Rodríguez, I., R.M. Pérez Silva, and A. Marañón Reyes. 2010. Determinación de sulfato por el método turbidimétrico en aguas y aguas residuales. Validación de método. Rev. Cuba. Quím. 22(3), 39-44.

Arriagada, C., D. Manquel, P. Cornejo, J. Soto, I. Sampedro, and J. Ocampo. 2012. Effects of the co-inoculation with saprobe and mycorrhizal fungi on Vaccinium corymbosum growth and some soil enzymatic activities. J. Soil Sci. Plant. Nutr. 12(2), 287-298. Doi: https://doi.org/10.4067/S0718-95162012000200008

Boeraeve, M., O. Honnay, and H. Jacquemyn. 2019. Local abiotic conditions are more important than landscape context for structuring arbuscular mycorrhizal fungal communities in the roots of a forest herb. Oecologia 190, 149-157. Doi: Doi: https://doi.org/10.1007/s00442-019-04406-z

Brody, A.K., B. Waterman, T.H. Ricketts, A.L. Degrassi, J.B. González, J.M. Harris, and L.L. Richardson. 2019. Genotype-specific effects of ericoid mycorrhizae on floral traits and reproduction in Vaccinium corymbosum. Amer. J. Bot. 106(11), 1412-1422. Doi: https://doi.org/10.1002/ajb2.1372

Bustillo, A. 2018. El cultivo de arándano (Vaccinium corymbosum) y su proyección en Colombia. Undergraduate thesis. Facultad de Ingeniería Agronómica, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogota.

Castañeda, C.S., P.J. Almanza-Merchán, E.H. Pinzón, G.E. Cely-Reyes, and P.A. Serrano-Cely. 2018. Chlorophyll concentration estimation using non-destructive methods in grapes (Vitis vinifera L.) cv. Riesling Becker. Rev. Colomb. Cienc. Hortic. 12(2), 329-337. Doi: https://doi.org/10.17584/rcch.2018v12i2.7566

Chatzistathis, T., M. Orfanoudakis, D. Alifragis, and I. Therios. 2013. Colonization of Greek olive cultivars’ root system by arbuscular mycorrhiza fungus: Root morphology, growth, and mineral nutrition of olive plants. Sci. Agric. 70(3), 185-194. Doi: https://doi.org/10.1590/S0103-90162013000300007

Colombia INCONTEC, Instituto Colombiano de Normas Técnicas y Certificación. 2011. NTC 370: abonos o fertilizantes. Determinación del nitrógeno total. Bogota.

Ebrahim, M.K.H. and A.-R. Saleem. 2017. Alleviating salt stress in tomato inoculated with mycorrhizae: Photosynthetic performance and enzymatic antioxidants. J. Taibah Univ. Sci. 11(6), 850-860. Doi: https://doi.org/10.1016/j.jtusci.2017.02.002

Ferlian, O., A. Biere, P. Bomfante, F. Buscot, N. Eisenhauer, I. Fernandez, B. Hause, S. Herrmann, F. Krajimski-Barth, I.C. Meier, M.J. Pozo, S. Rasmann, M.C. Rillig, M.T. Tarkka, N.M. Van Dam, C. Wagg, and A. Martinez-Medina. 2018. Growing research networks on mycorrhizae for mutual benefits. Trends Plant Sci. 23(11), 975-984. Doi: https://doi.org/10.1016/j.tplants.2018.08.008

Ganugi, P., A. Masoni, G. Pietramellara, and S. Benedettelli. 2019. A review of studies from the last twenty years on plant: Arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy 9(12), 840. Doi: https://doi.org/10.3390/agronomy9120840

Gao, L.X., S. Li, A.Q. Mo, F.M. Liu, Y. Chen, Z.Z. Zhou, and R.S. Zeng. 2012. Effects of inoculation of arbuscular mycorrhizal fungi on growth of rabbiteye blueberry (Vaccinium ashei Reade) in south China. Ecol. Environ. Sci. 2012(8),1413-1417.

Garzón, G.A., C.E. Narvaez, K.M. Riedl, and S.J. Schwartz. 2010. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 122(4), 980-986. Doi: https://doi.org/10.1016/j.foodchem.2010.03.017

Gerdemann, J.W. and T.H. Nicolson. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Brit. Mycol. Soc. 46, 235-244. Doi: https://doi.org/10.1016/S0007-1536(63)80079-0

Gholamhoseini, M., A. Ghalavand, A. Dolatabadian, E. Jamshidi, and A. Khodaei-Joghan. 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manage. 117(31), 106-114. Doi: https://doi.org/10.1016/j.agwat.2012.11.007

Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84(3), 489-500. Doi: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Grzyb, Z.S., L.S. Paszt, W. Piotrowski, and E. Malusa. 2015. The influence of mycorrhizal fungi on the growth of apple and sour cherry maidens fertilized with different bioproducts in the organic nursery. J. Life Sci. 9, 221-228.

Hart, M., D.L. Ehret, A. Krumbein, C. Leung, S. Murch, C. Turi, and P. Franken. 2015. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25, 359-376. Doi: https://doi.org/10.1007/s00572-014-0617-0

Hirzel, C.J. 2013. Fertilización en arándano. Boletín INIA No. 263. Instituto de Investigaciones Agropecuarias, Chillan, Chile.

Hurst, R.D., R.W. Wells, S.M. Hurst, T.K. Mcghie, J.M. Cooney, and D.J. Jensen. 2010. Blueberry fruit polyphenolics suppress oxidative stress-induced skeletal muscle cell damage in vitro. Mol. Nutrit. Food Res. 54(3), 353-363. Doi: https://doi.org/10.1002/mnfr.200900094

Hussain, S., M. Sharif, W. Ahmad, F. Khan, and H. Nihar. 2018. Soil and plants nutrient status and wheat growth after mycorrhiza inoculation with and without vermicompost. J. Plant Nutrit. 41(12), 1534-1546. Doi: https://doi.org/10.1080/01904167.2018.1459687

Istek, N. and O. Gurbuz. 2017. Investigation of the impact of blueberries on metabolic factors influencing health. J. Funct. Foods 38(Part A), 298-307. Doi: https://doi.org/10.1016/j.jff.2017.09.039

Liu, X.M., Q.L. Xu, Q.Q. Li, H. Zhang, and J.X. Xiao. 2017. Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress. J. Plant Nutr. 40(18), 2562-2570. Doi: https://doi.org/10.1080/01904167.2017.1380823

Liu, Y.X., Y.P. Wu, J. Chen, and B.P. Ji. 2013. Separation of different polyphenols in blueberries and comparison of their protective activity on cellular oxidative damage. J. Zhejiang Univ. - Agric. Life Sci. 39(4), 428-434. Doi: https://doi.org/10.3785/j.issn.1008-9209.2012.08.201

Luteyn, J.L. and P. Pedraza-Peñalosa. 2008. Blueberry relatives of the New World Tropics (Ericaceae). In: The New York Botanical Garden, www.nybg.org/bsci/res/lut2/; consulted: May, 2021.

Mikiciuk, G., L. Sas-Paszt, M. Mikiciuk, E. Derkowska, P. Trzcinski, S. Głuszek, A. Lisek, S. Wera-Bryl, and J. Rudnicka. 2019. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza 29, 489-501. Doi: https://doi.org/10.1007/s00572-019-00905-2

Miranda, D. 2021. El arándano, ¿Un cultivo rentable y sostenible para Colombia? pp. 37-50. In: Fischer, G., D. Miranda, S. Magnitskiy, H.E. Balaguera-López, and Z. Molano (eds.). Avances en el cultivo de las berries en el trópico. Sociedad Colombiana de Ciencias Hortícolas, Bogota. Doi: https://doi.org/10.17584/IBerries

Miranda, D., G. Fischer, and Ch. Ulrichs. 2011. The influence of arbuscular mycorrhizal colonization on the growth parameters of cape gooseberry (Physalis peruviana L.) plants grown in a saline soil. J. Soil Sci. Plant Nutr. 11(2), 18-30. Doi: https://doi.org/10.4067/S0718-95162011000200003

Nadeem, S.M., M. Ahmad, Z.A. Ahmad, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32(2), 429-448. Doi: https://doi.org/10.1016/j.biotechadv.2013.12.005

Ortas, I. 2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res. 125, 35-48. Doi: https://doi.org/10.1016/j.fcr.2011.08.005

Ortas, I., N. Sari, Ç. Akpinar, and H. Yetisir. 2011. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Sci. Hortic. 128(2), 92-98. Doi: https://doi.org/10.1016/j.scienta.2010.12.014

Phillips, J.M. and D.S. Hayman. 1970. Improve procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55(1), 158-161. Doi: https://doi.org/10.1016/S0007-1536(70)80110-3

Porras-Soriano, A., M.L. Soriano-Martín, A. Porras-Piedra, and R. Azcón. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive stress under nursery conditions. J. Plant Physiol. 166(13), 1350-1359. Doi: https://doi.org/10.1016/j.jplph.2009.02.010

Selvakumar, G., K. Kim, S. Hu, and T. Sa. 2014. Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress. In: Ahmad, P. and M. Wani (eds.). Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, NY. Doi: https://doi.org/10.1007/978-1-4614-8591-9_6

Smith, S.E. and D.J. Read. 2008. Mycorrhizal symbiosis. 3rd ed. Academic Press, Amsterdam. Doi: https://doi.org/10.1016/B978-0-12-370526-6.X5001-6

Świerczyński, S., A. Stachowiak, and M. Golcz-Polaszewska. 2015. Maiden pear trees growth in replant soil after inoculation of rootstocks with mycorrhizal inoculum. Nauka Przyr. Tech. 9(1), 3. Doi: https://doi.org/10.17306/J.NPT.2015.1.3

Talaat, N.B. and B.T. Shawky. 2014. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ. Exp. Bot. 96, 20-31. Doi: https://doi.org/10.1016/j.envexpbot.2013.10.005

Torres-Vera, R., J.M. García, M.J. Pozo, and J.A. López-Ráez. 2014. Do strigolactones contribute to plant defense? Mol. Plant Pathol. 15(2), 211-216. Doi: https://doi.org/10.1111/mpp.12074

Van der Heijden, E.W. and T.W. Kuyper. 2001. Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant Soil 230(2), 161-174. Doi: https://doi.org/10.1023/A:1010377320729

Vega, A.R., M. Garciga, A. Rodríguez, L. Prat, and J. Mella. 2009. Blueberries mycorrhizal symbiosis outside of the boundaries of natural dispersion for Ericaceous plants in Chile. Acta Hortic. 810, 665-671. Doi: https://doi.org/10.17660/ActaHortic.2009.810.88

Yang, L., Q.Q. Li, Y. Yang, Q. Chen, X. Gao, and J.-X. Xiao. 2020. Comparative transcriptome analysis reveals positive effects of arbuscular mycorrhizal fungi inoculation on photosynthesis and high-pH tolerance in blueberry seedlings. Trees 34, 433-444. Doi: https://doi.org/10.1007/s00468-019-01926-2

You, Q., B. Wang, F. Chen, Z. Huang, X. Wang, and P.G. Luo. 2011. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 125(1), 201-208. Doi: https://doi.org/10.1016/j.foodchem.2010.08.063

Wu, Q.-S., A.K. Srivastava, and Y.-N. Zou. 2013. AMF-induced tolerance to drought stress in citrus: A review. Sci. Hortic. 164, 77-87. Doi: https://doi.org/10.1016/j.scienta.2013.09.010

Zhu, X.Q., M. Tang, and H.Q. Zhang. 2017. Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress. Photosynthetica 55(2), 378-385. Doi: https://doi.org/10.1007/s11099-017-0662-y

Zydlik, Z., P. Zydlik, and T. Kleiber. 2019. The effect of the mycorrhization on the content of macroelements in the soil and leaves of blueberry cultivated after replantation. Zemdirbyste 106(4), 345-350. Doi: https://doi.org/10.13080/z-a.2019.106.044

Citado por: