Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto de la inoculación con Acaulospora and Glomus sobre el crecimiento y nutrición de arándanos (Vaccinium corymbosum) con diferentes niveles de fertilización

Left, blueberry roots (Vaccinium corymbosum) colonized by arbuscular mycorrhizal fungi (Glomus roseae); right, blueberry fruits (Vaccinium corymbosum) Photos: G. Roveda-Hoyos

Resumen

En los últimos años la demanda de arándanos a nivel mundial ha venido creciendo, debido a las propiedades nutracéuticas del fruto que generan importantes beneficios a la salud humana. Colombia, debido a su diversidad tiene una gran oportunidad para suplir las demandas del mercado mundial. En el presente estudio se evaluó el efecto de dos hongos formadores de micorrizas arbusculares (HFMA), de los géneros Glomus y Acaulospora asociadas con plantas de arándanos var. Biloxi al crecer con tres niveles de fertilización química (100, 50 y 0%), considerando como óptimo el 100%. Las plantas de arándano inoculadas con Glomus en condiciones de déficit nutricional (50HFMA1+) presentaron aumento en la masa seca, altura de planta, número de ramas basales, área foliar y relación raíces/parte aérea, con incrementos en la concentración de clorofila, con valores superiores estadísticamente significativos con respecto a los tratamientos sin inoculación con deficiencia nutricional (0HFMA- y 50HFMA-). Las plantas inoculadas con Glomus lograron un aumento en altura de planta, mientras las inoculadas Acaulospora aumentó el número de ramas basales, cuando crecieron bajo déficit nutricional (50HFMA+1) con relación a los controles sin inocular (0HFMA- y 50HFMA-). Los resultados sugieren que la mejor asociación de arándano se presenta con Glomus con aumento en el crecimiento y nutrición (N, P, K, Ca, Mg y S).

Palabras clave

Deficiencia nutricional, Micorrizas, Nutrientes, Estrés, Simbiosis

PDF (English)

Citas

  1. Abdel-Fattah, G.M., A.-W.A. Asrar, S.M. Al-Amri, and E.M. Absel-Salam. 2014. Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange status, growth and nutrient contents of soybean (Glycine max L.) plants grown in a sandy loam soil. J. Fruit Agric. Environ. 12(1), 150-156.
  2. Aguilera Rodríguez, I., R.M. Pérez Silva, and A. Marañón Reyes. 2010. Determinación de sulfato por el método turbidimétrico en aguas y aguas residuales. Validación de método. Rev. Cuba. Quím. 22(3), 39-44.
  3. Arriagada, C., D. Manquel, P. Cornejo, J. Soto, I. Sampedro, and J. Ocampo. 2012. Effects of the co-inoculation with saprobe and mycorrhizal fungi on Vaccinium corymbosum growth and some soil enzymatic activities. J. Soil Sci. Plant. Nutr. 12(2), 287-298. Doi: https://doi.org/10.4067/S0718-95162012000200008
  4. Boeraeve, M., O. Honnay, and H. Jacquemyn. 2019. Local abiotic conditions are more important than landscape context for structuring arbuscular mycorrhizal fungal communities in the roots of a forest herb. Oecologia 190, 149-157. Doi: Doi: https://doi.org/10.1007/s00442-019-04406-z
  5. Brody, A.K., B. Waterman, T.H. Ricketts, A.L. Degrassi, J.B. González, J.M. Harris, and L.L. Richardson. 2019. Genotype-specific effects of ericoid mycorrhizae on floral traits and reproduction in Vaccinium corymbosum. Amer. J. Bot. 106(11), 1412-1422. Doi: https://doi.org/10.1002/ajb2.1372
  6. Bustillo, A. 2018. El cultivo de arándano (Vaccinium corymbosum) y su proyección en Colombia. Undergraduate thesis. Facultad de Ingeniería Agronómica, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogota.
  7. Castañeda, C.S., P.J. Almanza-Merchán, E.H. Pinzón, G.E. Cely-Reyes, and P.A. Serrano-Cely. 2018. Chlorophyll concentration estimation using non-destructive methods in grapes (Vitis vinifera L.) cv. Riesling Becker. Rev. Colomb. Cienc. Hortic. 12(2), 329-337. Doi: https://doi.org/10.17584/rcch.2018v12i2.7566
  8. Chatzistathis, T., M. Orfanoudakis, D. Alifragis, and I. Therios. 2013. Colonization of Greek olive cultivars’ root system by arbuscular mycorrhiza fungus: Root morphology, growth, and mineral nutrition of olive plants. Sci. Agric. 70(3), 185-194. Doi: https://doi.org/10.1590/S0103-90162013000300007
  9. Colombia INCONTEC, Instituto Colombiano de Normas Técnicas y Certificación. 2011. NTC 370: abonos o fertilizantes. Determinación del nitrógeno total. Bogota.
  10. Ebrahim, M.K.H. and A.-R. Saleem. 2017. Alleviating salt stress in tomato inoculated with mycorrhizae: Photosynthetic performance and enzymatic antioxidants. J. Taibah Univ. Sci. 11(6), 850-860. Doi: https://doi.org/10.1016/j.jtusci.2017.02.002
  11. Ferlian, O., A. Biere, P. Bomfante, F. Buscot, N. Eisenhauer, I. Fernandez, B. Hause, S. Herrmann, F. Krajimski-Barth, I.C. Meier, M.J. Pozo, S. Rasmann, M.C. Rillig, M.T. Tarkka, N.M. Van Dam, C. Wagg, and A. Martinez-Medina. 2018. Growing research networks on mycorrhizae for mutual benefits. Trends Plant Sci. 23(11), 975-984. Doi: https://doi.org/10.1016/j.tplants.2018.08.008
  12. Ganugi, P., A. Masoni, G. Pietramellara, and S. Benedettelli. 2019. A review of studies from the last twenty years on plant: Arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy 9(12), 840. Doi: https://doi.org/10.3390/agronomy9120840
  13. Gao, L.X., S. Li, A.Q. Mo, F.M. Liu, Y. Chen, Z.Z. Zhou, and R.S. Zeng. 2012. Effects of inoculation of arbuscular mycorrhizal fungi on growth of rabbiteye blueberry (Vaccinium ashei Reade) in south China. Ecol. Environ. Sci. 2012(8),1413-1417.
  14. Garzón, G.A., C.E. Narvaez, K.M. Riedl, and S.J. Schwartz. 2010. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 122(4), 980-986. Doi: https://doi.org/10.1016/j.foodchem.2010.03.017
  15. Gerdemann, J.W. and T.H. Nicolson. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Brit. Mycol. Soc. 46, 235-244. Doi: https://doi.org/10.1016/S0007-1536(63)80079-0
  16. Gholamhoseini, M., A. Ghalavand, A. Dolatabadian, E. Jamshidi, and A. Khodaei-Joghan. 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manage. 117(31), 106-114. Doi: https://doi.org/10.1016/j.agwat.2012.11.007
  17. Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84(3), 489-500. Doi: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
  18. Grzyb, Z.S., L.S. Paszt, W. Piotrowski, and E. Malusa. 2015. The influence of mycorrhizal fungi on the growth of apple and sour cherry maidens fertilized with different bioproducts in the organic nursery. J. Life Sci. 9, 221-228.
  19. Hart, M., D.L. Ehret, A. Krumbein, C. Leung, S. Murch, C. Turi, and P. Franken. 2015. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25, 359-376. Doi: https://doi.org/10.1007/s00572-014-0617-0
  20. Hirzel, C.J. 2013. Fertilización en arándano. Boletín INIA No. 263. Instituto de Investigaciones Agropecuarias, Chillan, Chile.
  21. Hurst, R.D., R.W. Wells, S.M. Hurst, T.K. Mcghie, J.M. Cooney, and D.J. Jensen. 2010. Blueberry fruit polyphenolics suppress oxidative stress-induced skeletal muscle cell damage in vitro. Mol. Nutrit. Food Res. 54(3), 353-363. Doi: https://doi.org/10.1002/mnfr.200900094
  22. Hussain, S., M. Sharif, W. Ahmad, F. Khan, and H. Nihar. 2018. Soil and plants nutrient status and wheat growth after mycorrhiza inoculation with and without vermicompost. J. Plant Nutrit. 41(12), 1534-1546. Doi: https://doi.org/10.1080/01904167.2018.1459687
  23. Istek, N. and O. Gurbuz. 2017. Investigation of the impact of blueberries on metabolic factors influencing health. J. Funct. Foods 38(Part A), 298-307. Doi: https://doi.org/10.1016/j.jff.2017.09.039
  24. Liu, X.M., Q.L. Xu, Q.Q. Li, H. Zhang, and J.X. Xiao. 2017. Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress. J. Plant Nutr. 40(18), 2562-2570. Doi: https://doi.org/10.1080/01904167.2017.1380823
  25. Liu, Y.X., Y.P. Wu, J. Chen, and B.P. Ji. 2013. Separation of different polyphenols in blueberries and comparison of their protective activity on cellular oxidative damage. J. Zhejiang Univ. - Agric. Life Sci. 39(4), 428-434. Doi: https://doi.org/10.3785/j.issn.1008-9209.2012.08.201
  26. Luteyn, J.L. and P. Pedraza-Peñalosa. 2008. Blueberry relatives of the New World Tropics (Ericaceae). In: The New York Botanical Garden, www.nybg.org/bsci/res/lut2/; consulted: May, 2021.
  27. Mikiciuk, G., L. Sas-Paszt, M. Mikiciuk, E. Derkowska, P. Trzcinski, S. Głuszek, A. Lisek, S. Wera-Bryl, and J. Rudnicka. 2019. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza 29, 489-501. Doi: https://doi.org/10.1007/s00572-019-00905-2
  28. Miranda, D. 2021. El arándano, ¿Un cultivo rentable y sostenible para Colombia? pp. 37-50. In: Fischer, G., D. Miranda, S. Magnitskiy, H.E. Balaguera-López, and Z. Molano (eds.). Avances en el cultivo de las berries en el trópico. Sociedad Colombiana de Ciencias Hortícolas, Bogota. Doi: https://doi.org/10.17584/IBerries
  29. Miranda, D., G. Fischer, and Ch. Ulrichs. 2011. The influence of arbuscular mycorrhizal colonization on the growth parameters of cape gooseberry (Physalis peruviana L.) plants grown in a saline soil. J. Soil Sci. Plant Nutr. 11(2), 18-30. Doi: https://doi.org/10.4067/S0718-95162011000200003
  30. Nadeem, S.M., M. Ahmad, Z.A. Ahmad, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32(2), 429-448. Doi: https://doi.org/10.1016/j.biotechadv.2013.12.005
  31. Ortas, I. 2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res. 125, 35-48. Doi: https://doi.org/10.1016/j.fcr.2011.08.005
  32. Ortas, I., N. Sari, Ç. Akpinar, and H. Yetisir. 2011. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Sci. Hortic. 128(2), 92-98. Doi: https://doi.org/10.1016/j.scienta.2010.12.014
  33. Phillips, J.M. and D.S. Hayman. 1970. Improve procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55(1), 158-161. Doi: https://doi.org/10.1016/S0007-1536(70)80110-3
  34. Porras-Soriano, A., M.L. Soriano-Martín, A. Porras-Piedra, and R. Azcón. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive stress under nursery conditions. J. Plant Physiol. 166(13), 1350-1359. Doi: https://doi.org/10.1016/j.jplph.2009.02.010
  35. Selvakumar, G., K. Kim, S. Hu, and T. Sa. 2014. Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress. In: Ahmad, P. and M. Wani (eds.). Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, NY. Doi: https://doi.org/10.1007/978-1-4614-8591-9_6
  36. Smith, S.E. and D.J. Read. 2008. Mycorrhizal symbiosis. 3rd ed. Academic Press, Amsterdam. Doi: https://doi.org/10.1016/B978-0-12-370526-6.X5001-6
  37. Świerczyński, S., A. Stachowiak, and M. Golcz-Polaszewska. 2015. Maiden pear trees growth in replant soil after inoculation of rootstocks with mycorrhizal inoculum. Nauka Przyr. Tech. 9(1), 3. Doi: https://doi.org/10.17306/J.NPT.2015.1.3
  38. Talaat, N.B. and B.T. Shawky. 2014. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ. Exp. Bot. 96, 20-31. Doi: https://doi.org/10.1016/j.envexpbot.2013.10.005
  39. Torres-Vera, R., J.M. García, M.J. Pozo, and J.A. López-Ráez. 2014. Do strigolactones contribute to plant defense? Mol. Plant Pathol. 15(2), 211-216. Doi: https://doi.org/10.1111/mpp.12074
  40. Van der Heijden, E.W. and T.W. Kuyper. 2001. Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant Soil 230(2), 161-174. Doi: https://doi.org/10.1023/A:1010377320729
  41. Vega, A.R., M. Garciga, A. Rodríguez, L. Prat, and J. Mella. 2009. Blueberries mycorrhizal symbiosis outside of the boundaries of natural dispersion for Ericaceous plants in Chile. Acta Hortic. 810, 665-671. Doi: https://doi.org/10.17660/ActaHortic.2009.810.88
  42. Yang, L., Q.Q. Li, Y. Yang, Q. Chen, X. Gao, and J.-X. Xiao. 2020. Comparative transcriptome analysis reveals positive effects of arbuscular mycorrhizal fungi inoculation on photosynthesis and high-pH tolerance in blueberry seedlings. Trees 34, 433-444. Doi: https://doi.org/10.1007/s00468-019-01926-2
  43. You, Q., B. Wang, F. Chen, Z. Huang, X. Wang, and P.G. Luo. 2011. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 125(1), 201-208. Doi: https://doi.org/10.1016/j.foodchem.2010.08.063
  44. Wu, Q.-S., A.K. Srivastava, and Y.-N. Zou. 2013. AMF-induced tolerance to drought stress in citrus: A review. Sci. Hortic. 164, 77-87. Doi: https://doi.org/10.1016/j.scienta.2013.09.010
  45. Zhu, X.Q., M. Tang, and H.Q. Zhang. 2017. Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress. Photosynthetica 55(2), 378-385. Doi: https://doi.org/10.1007/s11099-017-0662-y
  46. Zydlik, Z., P. Zydlik, and T. Kleiber. 2019. The effect of the mycorrhization on the content of macroelements in the soil and leaves of blueberry cultivated after replantation. Zemdirbyste 106(4), 345-350. Doi: https://doi.org/10.13080/z-a.2019.106.044

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

1 2 > >> 

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.